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In this note, we investigate a problem posed by Maxime Ramzi about topological Hochschild

homology. At the time of writing, this problem is listed as problem 2 under trace methods on

Maxime’s website under the list of mathematical questions. I learned of this question during the

most recent Arbeitstagung at Bonn, when it was asked during one of the lunches, and decided to

work on it the following week- what follows is the solution I came up with at that time. Without

further ado, here is the precise statement of the question:

Question 1. For a ring spectrum R, we can consider the hs trace K(End(R)) → THH(R).

Is it true that every element in the image of K0(End(R)) → THH0(R) is in the image of

π0(R) → π0THH0(R)?

We answer this question in the negative. In fact, we prove:

Theorem 1. There exists an E∞-ring R such that the image of the map K0(R) → THH0(R) is

not contained in the image of π0(R) → THH0(R). In fact, R can be constructed out of the affine

line with doubled origin.

To be precise, recall that there is a functor from discrete rings to E∞-rings taking any ring R

to the Eilenberg-MacLane spectrum represented by R. This functor glues to a (contravariant)

functor from schemes to E∞-rings, which takes a scheme X to a ring, call it RX , with homotopy

groups πn(RX) = H−n(X,OX). The ring referenced in the theorem is this ring RX for X the

affine line with doubled origin (say, for simplicity, over Q). For the remainder of this note, let’s

fix Y the affine line with doubled origin so that we can speak of RY .

To prove the theorem, we will use the following lemma:

Lemma 1. Applying any spectra-valued localizing invariant (such as K-theory or THH) to the

pullback square of E∞-rings

RY Q[t]

Q[t] Q[t, t−1]

⌟

produces a cartesian square of spectra.

Let’s first prove the theorem assuming this lemma:

Proof of Theorem 1 assuming Lemma 1. By naturality of the Dennis trace map and using Lemma

1 for K and THH, we get a commutative diagram with exact rows:
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K1(Q[t])⊕2 K1(Q[t, t−1]) K0(RY ) K0(Q[t])⊕2 K0(Q[t, t−1])

THH1(Q[t])⊕2 THH1(Q[t, t−1]) THH0(RY ) THH0(Q[t])⊕2 THH0(Q[t, t−1]).

Now, we know that K1(Q[t]) ≃ K1(Q) ≃ Q×, and K1(Q[t, t−1]) ≃ Q[t, t−1]× ≃ Q× × Z.
Since we assumed everything above was rational, THH is equivalent to the Hochschild ho-

mology over Q, so by HKR, THH1(Q[t]) ≃ Q[t]dt, and THH1(Q[t, t−1]) ≃ Q[t, t−1]dt. Using

the long exact sequence, we find that THH0(RY ) ≃ Q[t] ⊕ Q[t, t−1]/Q[t], and the image of

π0(RY ) → THH0(RY ) is the Q[t] summand. Now, we look at t−1 ∈ K1(Q[t, t−1]), and noting

this comes from Hgrp
1 (GL1(Q[t, t−1])) → HH(Q[t, t−1]/Q), we can determine this map explic-

itly: t−1 corresponds to the element [t−1 : t], which maps to t−1dt under the HKR isomor-

phism. In particular, the image of t−1 under K1(Q[t, t−1]) → THH1(Q[t, t−1]) → THH0(RY ) is

t−1dt ∈ Q[t, t−1]/Q[t]dt, which is not in the image of the map π0(RY ) → THH0(RY ), yielding the

desired contradiction by considering the image of t−1 in K0(RY ). □

Now, for the proof of Lemma 1. We have to pass to the categorical level. We first recall that

there is a (in fact fpqc) sheaf of (stably symmetric monoidal) ∞-categories on schemes taking a

scheme X to (derived) quasicoherent sheaves on X, D(QCoh(X)), glued from R 7→ D(R). In

particular, since localizations of schemes map to localizations on the categorical level, we get

that any pushout square along open immersions (corresponding to gluing schemes) maps to a

pullback square under a localizing invariant. Thus, to prove Theorem 1, it suffices to show that

quasicoherent sheaves over Y are equivalent to modules over RY . This follows from a general

claim:

Lemma 2. Suppose X is a scheme with a cover by finitely many affine opens with affine in-

tersection such that any (underived) quasicoherent sheaf on X with vanishing global sections is

equivalent to zero. Then we have an equivalence of stably symmetric monoidal ∞-categories

D(QCoh(X)) ≃ RX −Mod.

To fix some notation in the proof, hom will refer to the mapping spectrum, and Hom to the

mapping space.

Proof. We recover this from the Schwede-Shipley Theorem (see Higher Algebra 7.1.2.7 for the

precise statement used). The hypotheses on X ensure that taking cohomology commutes with

filtered colimits so that the unit of D(QCoh(X)) is compact, which reduces us to the claim that

the unit generates D(QCoh(X)). Fix our chosen finite affine cover U1, ..., Un of X. For this,

take any M ∈ D(QCoh(X)) such that hom(RX ,M) ≃ 0. By the assumption on X, we can

put a t-structure on D(QCoh(X)) by gluing the t-structures on the derived categories for the

Ui. This t-structure allows us to identify the heart with the usual category of quasicoherent

sheaves on X. Now, if M is not equivalent to zero, we can find some n so that τ≥nM ̸= 0,

and up to shifts, we may assume n = 0. Now, the unit is connective by definition of the t-

structure, so Hom(RX ,M) ≃ Hom(RX , τ≥0M). Up to possibly shifting M again, we may assume

that π♡
0 M ̸= 0. Now, we can examine the cofiber sequence π♡

0 M → τ≥0M → τ≥1M . By

hypothesis, π♡
0 M ̸= 0, implying π0 hom(RX , π

♡
0 M) ̸= 0, so either π0 hom(RX , τ≥0M) ̸= 0 or
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π1 hom(RX , τ≥1M) ̸= 0, by the associated long exact sequences. In the former case, we have a

contradiction, since π0 hom(RX , τ≥0M) ≃ π0 hom(RX ,M), and in the latter case, we similarly

reach a contradiction since π1 hom(RX , τ≥1M) ≃ π1 hom(RX ,M). Thus, if hom(RX ,M) ≃ 0,

M ≃ 0, i.e., RX generated D(QCoh(X)), and thus by Schwede-Shipley, we get the claimed

equivalence. □

Now, with this in hand, it is easy to show:

Proof of Lemma 1. By Lemma 2, it suffices to show that every quasicoherent sheaf on the affine

line with doubled origin with vanishing global sections is identically zero. Indeed, thenD(QCoh(Y )) ≃
RY −Mod, and thus the pullback square in the statement of lemma 1 maps to a pullback square

of stable ∞-categories upon passing to modules, with all functors being Verdier localizations.

So, let M be a nonzero quasicoherent sheaf on the affine line with doubled origin, and let

M1, M2 be the restrictions to the two affine lines. Setting up the Cech complex, it looks like

M1 ⊕ M2 → M1[t
−1], where we have used M2[t

−1] ≃ M1[t
−1] implicitly. Now, if M1[t

−1] ̸= 0,

then since M2[t
−1] = M1[t

−1], we can take any m1 ∈ M1 with nonzero image in M1[t
−1], and

write m1 = m2t
−n for some m2 ∈ M2. But then (tnm1,−m2) ∈ M1 ⊕M2 is a nonzero element in

the kernel of the map in our complex, contributing a nonzero global section to M . On the other

hand, if M1[t
−1] = 0, then by hypothesis, either M1 or M2 is nonzero, but then these contribute

nonzero global sections to M since the Cech complex in this case just becomes M1 ⊕ M2 → 0,

whence the claim. □

What was left out of the question above is the interpretation of what it means, per Maxime’s

phrasing “i.e., is the Hattori-Stallings trace of any endomorphism of some perfect R-module equal

to the trace of some endomorphism of R?” What we have shown above is that this is not even

true for the trace of the identity endomorphism of a perfect R-module. One may ask what this

module is, and we can explicitly describe it. Namely, we note that the picard group of Y is

nontrivial, coming from the line bundle L glued from the isomorphism Q[t, t−1]
t−→ Q[t, t−1]. We

have a map from the Picard group to K0, which takes a line bundle L to 1− [L]. For our line L,

this is witnessed by the complex ΣL⊕ RY . This maps to zero in the K0 of each of the Q[t]s, so

lives in the span of the t−1 summand of K0(RY ) ≃ Z× Z, giving a perfect RY module such that

the trace of the identity endomorphism does not arise as the trace of an endomorphism of RY , as

desired.


