
MODULAR FORMS, MANIFOLDS AND MORE

LOGAN HYSLOP

Abstract. In this final project, we will one way in which the role of modular
forms plays out in differential topology: elliptic genera. §1 will begin our tale
with a discussion on genera and what it means to be an elliptic genus classically.
Following this, §2 will introduce the relevant facts about modular forms that we will
use throughout the paper. In §3, we discover how to construct an elliptic genus out
of an elliptic curve with a chosen 2-torsion point, and how this perspective leads us
to consider “elliptic genera” as specializations of one elliptic genus taking values in
the ring M∗ (Γ0 (2)) of modular forms with level Γ0 (2), and how important genera
are recovered by taking values at the cusps. In the last section, we briefly touch on
the connections between elliptic genera and some advanced topics that we will not
have time to cover in any detail.
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§1. Recollections on Genera

Throughout this paper, all of our manifolds are implicitly assumed to be smooth unless otherwise
stated.
Our story begins with Thom’s definition of a cobordism between smooth manifolds. In this
case, we consider the ring of cobordism classes of closed, oriented, smooth manifolds up to
oriented cobordism. Explicitly, this is a graded ring, with underlying graded abelian group
Ω𝑛 = {closed, oriented 𝑛 − dimensional manifolds 𝑀}/∼, where we say that 𝑀�̃� if there is
a compact, oriented 𝑛 + 1-dimensional manifold with boundary 𝑊 such that 𝜕𝑊 ≃ 𝑀

∐−𝑁 ,
where −𝑁 denotes 𝑁 with the reversed orientation. This can be made into an abelian group
with operation 𝑀 + 𝑁 := 𝑀

∐
𝑁 1, and the full collection inherits a graded-commutative ring

structure where [𝑀] · [𝑁] := [𝑀 × 𝑁]. We now have:

Definition 1.1. The oriented cobordism ring Ω𝑜𝑟
∗ is the graded commutative ring as described

above. For the purposes of this paper, we adopt the (non-standard) notation Ω∗ := Ω𝑜𝑟
∗ ⊗Q, and

will simply write Ω when considering Ω∗ without reference to the graded structure.

For the majority of the paper, we will work with Ω∗, due to the following theorem of Thom:

Theorem 1.2 (Thom). The ring Ω∗ is isomorphic as a graded ring to a polynomial algebra
Q[𝑥4𝑛] with a generator in each degree 4𝑛 𝑛 > 0. This isomorphism may be chosen in such a
way that 𝑥4𝑛 is represented by the cobordism class of the complex projective space P2𝑛 (C).

1One may allow ∅ to be an 𝑛-dimensional manifold to get a canonical zero element, otherwise 𝑀
∐−𝑀 for any

𝑀 can serve as a zero element.
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□
With this in hand, we can now define:

Definition 1.3. A(n) (𝑅-valued) genus is a ring homomorphism 𝜑 : Ω∗ → 𝑅 for some Q-
algebra 𝑅, which we require to be a domain.

The notion of a genus is very closely connected to the theory of characteristic classes,
and more specifically Pontrjagin classes. To be precise, given an even power series 𝑄(𝑥) =

1 + 𝑎2𝑥
2 + . . . ∈ 𝑅[[𝑥2]], and a 4𝑛-dimensional oriented closed manifold 𝑀 , we can form the

element
∫
𝑀
𝑄(𝑥1) . . . 𝑄(𝑥𝑛) ∈ 𝑅, where 𝑥2

1, . . . , 𝑥
2
𝑛 ∈ 𝐻4(𝑀,Q) are the Pontrjagin roots of

𝑇𝑀 2, which we will define as 𝜑𝑄 (𝑀), and we will set 𝜑𝑄 (𝑀) = 0 if dim 𝑀 . 0 mod 4.
One can show as in [Hir+13] that this defines a genus, and setting 𝑓 = 𝑥

𝑄 (𝑥 ) ∈ 𝑅[[𝑥]], 𝑔 the
compositional inverse to 𝑓 , that

Lemma 1.4. 𝑔′(𝑥) = ∑
𝑛≥0 𝜑𝑄 (P𝑛 (C))𝑥𝑛.

These power series arise naturally by considering virtual submanifolds of 𝑀 , which gives
rise to a formal group law for the genus, 𝑔′ arising as its logarithm, but for the sake of brevity
we forgo the formal discussion, referring instead to [Hir+13] for a more detailed treatment.

We now mention a couple notable examples of (C-valued) genera that will follow us later:

Example 1.5. (1) The �̂�-genus is the genus defined by �̂�(𝑀) := 𝜑𝑄 (𝑀) for 𝑄(𝑥) = 𝑥/2
sinh(𝑥/2) .

In this case, 𝑓 (𝑥) = 2 sinh(𝑥/2) satisfies the differential equation ( 𝑓 ′)2 = 1 + 1
4 𝑓

2, and then
𝑔′(𝑥)2 = 1

1+ 1
4 𝑥

2 =
∑

𝑛≥0(−1)𝑛 ( 𝑥2 )
2𝑛 tells us the value of the �̂�-genus on complex projective

spaces by inductively constructing the square root 𝑔′ uniquely determined by the fact that
𝑔′(0) = 1.
(2) The 𝑳-genus is the genus defined by 𝐿 (𝑀) := 𝜑𝑄 (𝑀) when 𝑄(𝑥) = 𝑥

tanh(𝑥 ) . In this case,
we can compute that ( 𝑓 ′)2 = 1 − 2 𝑓 2 + 𝑓 4, so 𝑔′(𝑥) = 1

1−𝑥2 =
∑

𝑛≥0 𝑥
2𝑛, so that the 𝐿-genus

takes value 1 on all P2𝑛 (C).

The 𝐿-genus has an equivalent description as the signature of a manifold. The signature
sign(𝑀) of a closed, oriented 4𝑘-dimensional manifold 𝑀 is the signature of the bilinear
form ⟨𝑥, 𝑦⟩ :=

∫
𝑀
𝑥 ∧ 𝑦 on the middle dimensional cohomology 𝐻2𝑘

𝑑𝑅
(𝑀). The fact that

sign(𝑀) = 𝐿 (𝑀) follows from the Hirzebruch signature theorem, which can be proven fol-
lowing Hirzebruch’s original proof or by applying the Atiyah-Singer index theorem to an
appropriate elliptic operator.

One can examine the power series ℎ(𝑥) :=
∑

𝑛≥0 𝜑(P𝑛 (H))𝑥2𝑛 with coefficients the value
of our genus on quaternionic projective spaces. As in [Hir+13], we can show that ℎ( 𝑓 (𝑥)) =

𝑓 (2𝑥 )
2 𝑓 (𝑥 ) 𝑓 ′ (𝑥 ) . This leads one to the following definition:

Definition 1.6. The genus associated to 𝑓 is said to be elliptic if 𝑓 (2𝑥) = 2 𝑓 (𝑥 ) 𝑓 ′ (𝑥 )
1−𝜀 𝑓 4 .

If we specify that 𝑓 is an odd power series such that 𝑔′(𝑥) = 1 + 𝛿𝑥2 + . . ., then the data
of 𝜀 and 𝛿 uniquely determine 𝑓 , which is quickly verified by examining the coefficients above
in 𝑓 (2𝑥) = 2 𝑓 (𝑥) 𝑓 ′(𝑥) (∑𝑛≥0 𝑓 4𝑛 (𝑥)). For the 𝑥3 coefficient, this can be freely chosen (for the

2We are lying a little bit here, since these may not literally exist in 𝐻4 (𝑀,Q), but one can use the splitting
principle to pass to a case when they actually do exist to make the definition. Using the fact 𝑄(𝑥1)...𝑄(𝑥𝑛) has
homogeneous components given by symmetric polynomials in the 𝑥2

1, ..., 𝑥
2
𝑛 in each dimension, in particular in

dimension 4𝑛, one can make sense of this as long as one knows the total Pontrjagin class of 𝑇𝑀 .
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RHS, we have (𝑥 + 𝑎3𝑥
3 + . . .) (1 + 3𝑎3𝑥

2 + . . .) (1 + . . .) = 𝑥 + 4𝑎3𝑥
3 + . . .), and is where the

choice of 𝛿 is needed, but for 𝑛 > 3, we get a formula for the coefficient of 𝑥𝑛 in terms of the
lower degree coefficients, giving uniqueness. For an odd power series 𝑓 , this is equivalent to
the condition that ( 𝑓 ′)2 = 1 − 2𝛿 𝑓 2 + 𝜀 𝑓 4, which can be seen by proving a similar uniqueness
claim here, then following the strategy of proof on page 27 of [Hir+13].

Example 1.7. The 𝐿-genus and �̂�-genus in particular were both elliptic genera, giving our first
examples. For the 𝐿-genus, 𝜀 = 𝛿 = 1, and for the �̂�-genus, 𝜀 = 0, 𝛿 = −1

8 .
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§2. A Digression on Modular Forms

In this section, we collect some of the results from the general theory of modular forms to be
used in this paper. For the most part, these were all discussed in class. As a first goal, we wish
to determine the ring M∗(Γ0(2)). To start with, note:

Lemma 2.1. The modular curve 𝑋0(2) has genus 0, 2 cusps, 1 elliptic point of order 2, and no
elliptic points of order 3.

Proof. By [Woh64] the lcm of the index of the cusps for a congruence subgroup Γ is the
smallest 𝑁 such that Γ(𝑁) ⊆ Γ. In particular, the least common multiple of the cusps for Γ0(2)
must be 2. Since [SL2(Z) : Γ0(2)] = 3, there are at most 3 cusps, and since at least one of
them has to have index 2, there can only be two cusps, one of index 2 and one of index 1.

We can even be explicit, noting that
[
1 1
0 1

]
∈ Γ0(2), so that the cusp ∞ has index 1, and[

1 0
1 1

]
∉ Γ0(2), but

[
1 0
2 1

]
∈ Γ0(2), so the cusp 0 has index 2. Plugging this into our genus

formula: 𝑔 = 1+ 𝑑
12 −

𝜀2
4 − 𝜀3

3 − 𝜀∞
2 = 1+ 3

12 −
𝜀2
4 − 𝜀3

3 −1, and using that the genus is nonnegative,
we find that we must have 𝑔 = 0, 𝜀2 = 1, 𝜀3 = 0, as claimed. □

With this in hand, we can use Diamond and Shurman Theorem 3.5.1 to find that dimM𝑘 (Γ0(2)) =
(𝑘 − 1) (−1) + ⌊ 𝑘4 ⌋ +

𝑘
2 · 2 = 1 + ⌊ 𝑘4 ⌋ for 𝑘 ≥ 2 even (and −𝑖𝑑 ∈ Γ0(2), so M2𝑘+1(Γ0(2)) = 0).

If we had a graded polynomial algebra C[𝑥, 𝑦] with |𝑥 | = 2, |𝑦 | = 4, with an injective map to
M∗(Γ0(2)), comparing their Poincaré series would show that they are isomorphic. To this end,
will need the notion of an index 0 Jacobi form:

Definition 2.2. A Jacobi form of index 0, weight 𝒌 and level 𝚪 is a functionΦ(𝜏, 𝑧) : H×C →
C such that Φ(𝜏,−) is elliptic for the lattice 2𝜋𝑖(𝜏Z +Z), and Φ(𝛾(𝜏), 𝑥 𝑗 (𝛾, 𝜏)−1) 𝑗 (𝜑, 𝜏)−𝑘 =

Φ(𝜏, 𝑧).

Here H denotes the upper half plane. The only index 0 Jacobi form we will actually work
with is the weight 2 level SL2(Z) Jacobi form given by the familiar Weierstrass ℘-function
(following Hirzebruch’s non-standard choice of lattice points)

℘(𝜏, 𝑧) = 1
𝑧2 +

∑︁
(𝑚,𝑛) ∈Z2\{ (0,0) }

1
(𝑧 − 2𝜋𝑖(𝑚𝜏 + 𝑛))2 − 1

(2𝜋𝑖(𝑚𝜏 + 𝑛))2 .

We have the following important property of index 0 Jacobi forms, which can be proven via
elementary complex analysis:

Theorem 2.3 ([Hir+13] Theorem I.3.1). If Φ is a Jacobi form as above of index 0, weight
𝑘 and level Γ, (𝛼, 𝛽) ∈ R2, and 𝑔𝑛 (𝜏) the 𝑛th coefficient in the Taylor expansion of Φ(𝜏,−)
at 2𝜋𝑖(𝑎𝜏 + 𝛽), then 𝑔𝑛 (𝜏) | [𝛾 ]𝑛+𝑘 = 𝑔𝑛 for all 𝛾 ∈ Γ such that (𝛼, 𝛽)𝛾 ≡ (𝛼, 𝛽) mod Z2.
Furthermore, if one denotes this 𝑔𝑛 now by 𝑔

(𝛼,𝛽)
𝑛 , then we have that 𝑔

(𝛼,𝛽)
𝑛 (𝜏) | [𝛾 ]𝑛+𝑘 =

𝑔
(𝛼,𝛽)𝛾
𝑛 (𝜏), and 𝑔

(𝛼,𝛽)
𝑛 depends only on (𝛼, 𝛽) mod Z2.

Remark 2.4. This should be seen as a natural generalization of the fact that the 𝑛th Taylor
coefficient of ℘(𝜏,−), our familiar Eisenstein series, form modular forms of weight 𝑛 for the
whole group SL2(Z).
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Proof. The first statement is proved in [Hir+13], so we prove the more general claim, which
follows a similar method. Note that 𝑔 (𝛼,𝛽)

𝑛 = 1
2𝜋𝑖

∮
Φ(𝜏,𝑧+2𝜋𝑖 (𝛼𝜏+𝛽) )

𝑧𝑛+1 𝑑𝑧, so we have that:

𝑔
(𝛼,𝛽)
𝑛 | [𝛾 ]𝑛+𝑘 =

1
2𝜋𝑖

∮
Φ(𝛾𝜏, 𝑧 + 2𝜋𝑖(𝛼𝛾(𝜏) + 𝛽))

𝑧𝑛+1 𝑗 (𝛾, 𝜏)−𝑛−𝑘𝑑𝑧

=
1

2𝜋𝑖

∮
Φ(𝛾𝜏, (𝑧 𝑗 (𝛾, 𝜏) + 2𝜋𝑖(𝛼′𝜏 + 𝛽′)) 𝑗 (𝛾, 𝜏)−1)

(𝑧 𝑗 (𝛾, 𝜏))𝑛+1 𝑗 (𝛾, 𝜏)−𝑘𝑑 (𝑧 𝑗 (𝛾, 𝜏))

=
1

2𝜋𝑖

∮
Φ(𝜏, 𝑧 + 2𝜋𝑖(𝛼′𝜏 + 𝛽′))

𝑧𝑛+1 𝑑𝑧

= 𝑔
(𝛼′ ,𝛽′ )
𝑛

where (𝛼′, 𝛽′) = (𝛼, 𝛽)𝛾, as claimed. □

From this, we make a few definitions. Define 𝑒1(𝜏) := ℘(𝜏, 𝜋𝑖), 𝑒2(𝜏) := ℘(𝜏, 𝜏𝜋𝑖), and
𝑒3(𝜏) := ℘(𝜏, 𝜏𝜋𝑖 + 𝜋𝑖). By Theorem 2.3, we have that 𝑒1 is a modular form3 on the subgroup
of all 𝛾 with (0, 1

2 )𝛾 ≡ (0, 1
2 ) mod Z2, which we can see imposes the requirement, with

𝛾 =

[
𝑎 𝑏

𝑐 𝑑

]
, 𝑐 ≡ 0 mod 2, so that 𝑒1 is a modular form of weight 2 and level Γ0(2). Similarly,

𝑒2 is a modular form of weight 2 and level Γ0(2), and 𝑒3 is a modular form of weight 2

and level {𝑋 ∈ SL2(Z) : 𝑋 ≡ 𝑖𝑑 or
[
0 1
1 0

]
mod 2}. Furthermore, | [𝛾 ]2 permutes the 𝑒𝑖 for

𝛾 ∈ SL2(Z).
We now define some modular forms that will be of great importance later: let 𝛿(𝜏) :=

−3
2 𝑒1(𝜏) ∈ M2(Γ0(2)), and 𝜀(𝜏) := (𝑒1 − 𝑒2) (𝑒1 − 𝑒3) ∈ M4(Γ0(2)). These are holomorphic

on H, and one can see that they are also holomorphic at cusps We have the following theorem:

Theorem 2.5. M∗(Γ0(2)) = C[𝛿, 𝜀].

Proof. By our remarks above, it suffices to show that 𝛿 and 𝜀 do not satisfy any nontrivial
relations. As usual, it suffices to find a point 𝑒 where 𝛿 vanishes and 𝜀 does not (or vice versa),
as then any minimal relation

∑
𝑖 𝑎𝑖𝛿

2𝑖𝜀𝑛−𝑖 must have 𝑎0 = 0, and we can divide out 𝛿2 to get a
smaller relation, a contradiction. Hirzebruch proves by means of a valence formula that taking
𝑒 to be the elliptic point of order 2 works. We can also do this by examining cusps. Note that
𝑒1(𝜏) = −1

𝜋2 (1 +∑ 1
(1−2(𝑚𝜏+𝑛) )2 − 1

(2𝑚𝜏+2𝑛)2 ), and taking 𝜏 → +𝑖∞, playing a bit fast and loose

with limits reduces us to just −1
𝜋2 (1 +∑

𝑛≠0
1

(2𝑛−1)2 − 1
(2𝑛)2 ) = −2

𝜋2 ( 𝜋
2

12 ) =
−1
6 . For 𝑒2 and 𝑒3, it is

even simpler, since there we have 𝑧 = 𝜋𝑖𝜏 resp. 𝜋𝑖𝜏 + 𝜋𝑖, which grow large as 𝜏 does, leaving
us with only

∑
𝑛≠0

1
𝜋2 (2𝑛)2 = 1

2𝜋2
∑

𝑛≥1
1
𝑛2 = 1

12 . To calculate the value of 𝛿 at the cusp 0, we

need to do, for 𝛼 =

[
0 1
−1 0

]
, 𝛿 | [𝛼]2 (∞) = − 3

2𝑒1 | [𝛼]2 (∞) = −3
2 𝑒2(∞) = −1

8 . For 𝜀 at this cusp,

we note that (𝑒1 − 𝑒3) | [𝛼]2 = (𝑒2 − 𝑒3), and 𝑒2(∞) = 𝑒3(∞) = 1
12 , so that 𝜀 takes the value 0 at

the other cusp, and 𝛿 is nonzero at this cusp. □

The above is a reflection of the underlying geometric philosophy at play. These 𝑒𝑖 , for a
fixed 𝜏, are the images of the 2-torsion points of the elliptic curve under the Weierstrass function
for the chosen lattice for the curve. The same definitions work for 𝑒𝑖 ∈ C for an arbitrary lattice
Z𝜔1 +Z𝜔2 with fixed 2-torsion point 𝜔1/2 (and changing to a standard basis will only possibly

3Or at least weakly modular, we will look at the behavior of the 𝑒𝑖 at ∞ shortly which will give that it is a
modular form.
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change the associated genus up to a normalization factor). The above cases correspond to the
degeneration 𝜔1 → 0, which makes 𝑒2 tend to 𝑒3, and so 𝜀 = 𝛿2, in the case of the cusp at ∞,
and the other two cases, we could have either 𝜔1 → 𝜔2, or 𝜔2 → 0, in which case 𝑒1 = 𝑒2 or
𝑒1 = 𝑒3, giving 𝜀 = 0, exactly the second case seen above.
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§3. Modular Forms and Elliptic Genera

Given a lattice Λ in the plane C, there is a way to construct a (C-valued) elliptic genus out of
it, by using the Weierstrass ℘-function for the lattice. On the other hand, we can construct all
of these genera at once as a M∗(Γ0(2))-valued elliptic genus, taking for the 𝛿, 𝜀 mentioned in
§1 exactly the modular forms from §2 with these names. We make the following definition:

Definition 3.1. Define the universal elliptic genus as the elliptic genus 𝜑Eℓℓ : Ω → M∗(Γ0(2)) =
C[𝛿, 𝜀] associated to the odd power series 𝑓 (𝑥) = 𝑥 + . . . with coefficients in C[𝛿, 𝜀] which
solves ( 𝑓 ′)2 = 1 − 2𝛿 𝑓 2 + 𝜀 𝑓 4 as in §1.

Any other elliptic genus over a C-algebra (the correct notion above is really to work with
rational modular forms to get the truly universal case) can of course be obtained from this one
by the map C[𝛿, 𝜀] → 𝑅 picking out the elements of the synonymous names. One benefit of
thinking about this universal target ring as the ring M∗(Γ0(2)) is that our elliptic genus now
assigns an actual modular form 𝜑Eℓℓ to any oriented closed smooth manifold 𝑀 , and if 𝑀 has
dimension 4𝑘 , 𝜑Eℓℓ (𝑀) has weight 2𝑘 . A natural question to ask is what do the specializations
to the cusps look like?

Proposition 3.2. At the cusp ∞, we have that 𝜑Eℓℓ |∞ is, up to a normalization factor, the
𝐿-genus, and at the other cusp 0, 𝜑Eℓℓ |0 is the �̂�-genus.

Proof. This follows from the fact that 𝛿(∞) = −3
2 · −1

6 = 1
4 , so that 𝜑∞(P2(C)) = 1

4 , and
𝜀(∞) = ( −1

6 − 1
12 )

2 = 1
16 . The case 𝜀 = 𝛿2 is, up to normalization, the 𝐿-genus, where the

normalization we use is changing 𝑓 (𝑥) to 𝑓 (2𝑥 )
2 , which amounts to 𝐿 (𝑀) = 4dim(𝑀 )/4𝜑∞(𝑀).

At the other cusp, letting 𝛼 =

[
0 1
−1 0

]
again, we had 𝛿 | [𝛼]2 (∞) = −3

2 · 1
12 = −1

8 , and

𝜀 | [𝛼]2 (∞) = 0, which was exactly the case of the �̂�-genus, without any need to normalize. □

So, we see that two of the most important examples of elliptic genera- the signature and the
�̂�-genus- arise from the values on the cusps of the universal elliptic genus. The other point that
we could ask about is the elliptic point on 𝑋0(2), where, by the valence formula in [Hir+13], 𝛿
vanishes but 𝜀 does not. Thus, up to normalization, the elliptic genus specified at this point has
𝛿 = 0 and 𝜀 = 1. It is determined by a power series 𝑓 (𝑥) = 𝑥 + 𝑎1𝑥

3 + . . . with 𝑎1 = 0, satisfying
( 𝑓 ′)2 = 1 + 𝑓 4. If we plug this into Wolfram alpha, it tells us a solution in terms of the Jacobi
elliptic function sn. I do not know if this actually has a name as a genus.
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§4. Outlook

In this section we collect a general overview of some results in elliptic genera that will not be
elaborated on due to lack of time and space. One key point that I’d love to come back to and
add more detail about later is the connection between elliptic genera and the free loop space
L(𝑋) of a manifold 𝑋 . The theory of genera is large and broad, with applications permeating
throughout modern mathematics, and a paper as short as this could not hope to do the full
theory justice. As recompense, here are a few other connections that are discussed in [Hir+13]
or elsewhere:

§4.1. Connections to Moonshine. One can define the so-called Witten genus 𝜑𝑊 defined
from 𝑄(𝑥) = 𝑥/2

sinh(𝑥/2)
∏

𝑛≥1
(1−𝑞𝑛 )2

(1−𝑞𝑛𝑒𝑥 ) (1−𝑞𝑛𝑒−𝑥 ) , which takes values in the ring of power series
[ [𝑞]], and if we restrict to manifolds admitting a spin structure, it lands in Z[[𝑞]]. There is a
certain characteristic class, the vanishing of which on 𝑀 ensures that 𝜑𝑊 (𝑀) is the 𝑞-expansion
of a modular form. Hirzebruch-Berger-Jung relate the Witten genus to values of the �̂�-genus
with coefficients, and proves that for a 24-dimensional manifold 𝑋 with �̂�(𝑋) ≠ 0, there is a
formula relating values of �̂� with coefficients in various vector bundles and the 𝑗-function. In
particular, there is a question posed as to whether there exists a 24-dimensional manifold with
prescribed �̂�-genus and certain cohomology classes vanishing, which would have a chance
for the monster group to act on it via diffeomorphisms, providing a way to construct many
representations of this group.

§4.2. Elliptic Cohomology. Since elliptic genera provide a way to obtain a topological invari-
ant out of an elliptic curve, it is a natural question to ask whether this can be improved to a full
cohomology theory. The theory of elliptic cohomology has progressed rapidly and found uses
in the study of chromatic homotopy theory and physics. We will focus only on the pre-history,
and not the modern treatment. There are several closely related notions of an orientation of a
cohomology theory.
Digression: complex-oriented cohomology theoires: A complex orientation on a multiplica-
tive cohomology theory ℎ∗ is a class 𝑢 ∈ ℎ2(CP∞) which restricts along 𝑖 : CP1 → CP∞ to
𝑖∗(𝑢) ∈ ℎ2(CP1) ≃ ℎ0(∗) to the identity 1 ∈ ℎ0(𝑝𝑡). Complex oriented cohomology theories
are the foundation of modern chromatic homotopy theory, since they form a “nice” family of
cohomology theories, each giving rise to formal group laws. Quillen showed that the complex
cobordism ring (defined similarly to the oriented cobordism ring from the start but with stably
almost complex manifolds instead) is isomorphic to the Lazard ring, the ring with a universal
formal group law. Further work in the field from the likes of Hopkins, Ravenel, Landweber and
others, proved that one can go the other way, that suitably nice formal group laws give rise to
complex-oriented cohomology theories, and one can even make a stratification of the category
of spectra in terms of the moduli stack of formal group laws, which is what is now known as
chromatic homotopy theory.

Since we are working with oriented cobordisms, we should ask for a real orientation. The
general strategy for this is to abuse complex conjugation, so we define an orientation of a
multiplicative homology theory ℎ∗ (on which we will always assume 2 is inverted from now
on so that in particular there isn’t any funny business with homotopy fixed points4) with a
complex orientation 𝑢 ∈ ℎ2(CP∞) such that �̄� = −𝑢 where �̄� denotes the image under the
action of complex conjugation. This complex orientation gives rise to a formal group law 𝐹

4basically group cohomology for 𝐶2
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which corresponds to the manner one would build a formal group law out of 𝑓 (𝑥) for a genus,
characterized by 𝐹 (𝑢, 𝑣) = 𝑓 (𝑔(𝑢) + 𝑔(𝑣)), with notation as in §1. We are identifying these as
such, since a real orientation gives rise to a map 𝑀𝑆𝑂 [ 1

2 ] → ℎ∗, which, applied to a point,
gives a ring map 𝜑 : Ω∗(∗) → ℎ∗(∗), providing us with a genus. One of the initial motivations
for elliptic cohomology is the following example:

Example 4.1. Consider the ring C[𝛿, 𝜀] as a differential graded C-algebra with trivial dif-
ferentials, where we put 𝛿 in (homological) degree 4 (cohomological degree −4) and 𝜀 in
homological degree 8 (cohomological degree −8). This forms a rational cohomology theory,
and one can choose an orientation for it as in [Seg87] (2.3) in such a way that the induced map
recovers the universal elliptic genus 𝜑Eℓℓ from before.
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