
A DEDEKIND APPROACH TO EISENSTEIN COCYLES IN MOTIVIC
COHOMOLOGY

LOGAN HYSLOP

Abstract. In this note, we will discuss an approach to certain cocyles constructed by
Sharifi-Venkatesh [SV23] through examining the motivic cohomology of Dedekind
schemes. In the first section, we review Gysin filtrations on motivic cohomology
(which works for any algebraic cohomology theory admitting a Thom isomorphism).
With this background in play, we specialize to the case of schemes over the integers
Z, and describe the procedure to recover the cocycles constructed in [SV23]. We end
by expanding on the construction of this class through “naive equivariant motivic
cohomology,” noting that there are GL2 (Z)-equivariant actions everywhere, which
gives rise to the class of the cocycle Θ in a natural way.
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§1. Review of Gysin Filtrations

Fix a commutative ring 𝑘 of finite Krull dimension. We will work with the motivic homotopy
category Sp𝑚𝑜𝑡

𝑘
1, although since we only care about motivic cohomology, the reader may freely

assume the constructions are taking place in the category DM𝑘 of motives over 𝑘 . With this in
mind, we will often abusively write a scheme 𝑋 for its suspension spectrum Σ∞+ 𝑋 (respectively
motive 𝑀 (𝑋)), at least when no confusion is likely to arise. Given a stable ∞-category C, a
filtered object in C will mean a functor Z≤ → C, which we represent as a diagram

𝐶• = . . .→ 𝐶𝑖+1 → 𝐶𝑖 → 𝐶𝑖−1 → . . . .

Any filtered object gives rise to an associated graded obtained by taking 𝐶𝑔𝑟

𝑖
:= cofib(𝐶𝑖+1 →

𝐶𝑖), whose homotopy groups (supposing C has a good notion of homotopy groups) serve as
the 𝐸1-page of a spectral sequence. Under suitable conditions on 𝐶• (namely, that lim←−−𝐶• ≃ 0),
this spectral sequence will converge to the homotopy groups of lim−−→𝐶•. We refer to [BHS22,
§Appendix B] for a more in depth discussion of the formalism of filtered objects.

Construction. Consider a smooth equi-dimensional 𝑘-scheme 𝑋 , and closed subschemes 𝑋 =

𝑍0 ⊇ 𝑍1 ⊇ . . . ⊇ 𝑍𝑛 ⊇ 𝑍𝑛+1 = ∅, such that 𝑍𝑖 has pure codimension 𝑖, and 𝑍𝑖\𝑍𝑖+1 is smooth
for all 𝑖. To such data, encoded by {𝑍𝑖}, we associate a filtered object {𝑍𝑖}𝑔𝑦𝑠• ∈ Sp𝑚𝑜𝑡

𝑘
, which

we will term the Gysin filtration for {𝑍𝑖}, defined by:

(1.1) . . .
𝑖𝑑−−→ 𝑋

𝑖𝑑−−→ 𝑋 → cofib(𝑋\𝑍1 → 𝑋) → . . .→ cofib(𝑋\𝑍𝑛 → 𝑋) → 0→ . . . ,

where the final 𝑋 which appears in the diagram lives in grading 0 (that is {𝑍𝑖}𝑔𝑦𝑠0 = 𝑋).

1This can be defined as Nisnevich sheaves of finite type smooth 𝑘-schemes valued in the (∞-)category of spectra
which are A1-invariant- that is, the natural map F (𝑋) → F (A1 × 𝑋) is an equivalence for all smooth 𝑘-schemes 𝑋 .
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Given a Gysin filtration on 𝑋 , and a motivic spectrum Y , we can consider the object
Hom({𝑍𝑖}𝑔𝑦𝑠• ,Y), defined by taking morphisms to 𝑌 pointwise in the diagram (1.1). The
resulting object is a filtration on the 𝑌 -based cohomology of 𝑋 . This leads to:

Definition 1.1. Given a motivic spectrumY and a Gysin filtration on 𝑋 , theY-based Gysin spec-
tral sequence for 𝑋 is the spectral sequence associated to the filtered object Hom({𝑍𝑖}𝑔𝑦𝑠• ,Y).

To describe the 𝐸1-page and relate this back to our usual Gysin spectral sequence, we use
the homotopy purity theorem:

Theorem 1.2 (Homotopy Purity, [MV99] Theorem 3.2.23 ). Let 𝑘 be a Noetherian ring of
finite Krull dimension. If 𝑍 → 𝑋 is closed embedding of smooth 𝑘-schemes, then there is an
equivalence cofib(𝑋\𝑍 → 𝑋) ≃ Th(𝑁𝑍 (𝑋)). Here 𝑁𝑍 (𝑋) → 𝑍 is the normal bundle of 𝑍 in
𝑋 , and Th(𝐸) is the Thom space of a vector bundle 𝐸 , which may be defined as the homotopy
quotient of 𝐸 by the complement of the zero section, 𝐸/𝐸 − 𝑖0(𝑋).

Corollary 1.3. There is an equivalence

fib(cofib(𝑋\𝑍𝑖 → 𝑋) → cofib(𝑋\𝑍𝑖+1 → 𝑋)) ≃ Th𝑍𝑖\𝑍𝑖+1 (𝑋\𝑍𝑖+1).

Proof. Since 𝑍𝑖\𝑍𝑖+1 is smooth and closed in 𝑋\𝑍𝑖+1, the homotopy purity theorem applies to
the canonical inclusion 𝑋\𝑍𝑖 → 𝑋\𝑍𝑖+1 to tell us the cofiber is equivalent to Th𝑍𝑖\𝑍𝑖+1 (𝑋\𝑍𝑖+1).
A diagram chase (namely the octahedral axiom) applied to 𝑋\𝑍𝑖 → 𝑋\𝑍𝑖+1 → 𝑋 proves the
claim. □

In particular, if the normal bundle 𝑁𝑍𝑖\𝑍𝑖+1 (𝑋\𝑍𝑖+1) is trivial, then the Thom space is
equivalent to (P1)∧𝑖 ∧ (𝑍𝑖\𝑍𝑖+1), which is a shift of 𝑍𝑖\𝑍𝑖+1 by 𝑆2𝑖,𝑖, and

𝐻 𝑝,𝑞 (Th(𝑁𝑍𝑖\𝑍𝑖+1 (𝑋\𝑍𝑖+1)),Y) ≃ 𝐻 𝑝−2𝑖,𝑞−𝑖 (𝑍𝑖\𝑍𝑖+1,Y),

for any motivic spectrum Y . In general though, there is no reason to expect the Gysin filtration
to be easy to define unless our cohomology theory supports a Thom isomorphism (which occurs
e.g., if it is oriented). However, in these cases, we recover:

Corollary 1.4. If Y is an oriented motivic spectrum, then the 𝐸1-page of a Y-based Gysin
spectral sequence for 𝑋 has the form

𝐸
𝑝,𝑞

1 = 𝐻𝑞−𝑝,𝑟−𝑝 (𝑍𝑝\𝑍𝑝+1,Y) =⇒ 𝐻 𝑝+𝑞,𝑟 (𝑋,Y).

□
These filtered objects are contravariantly functorial under refining the filtration, so by

passing to an inverse limit of filtered objects one can recover a Coniveau filtration (when we
dualize to cohomology, the inverse limit defining this filtered object will become a filtered
colimit, and since filtered colimits commute with taking homotopy groups, this will recover
the Coniveau spectral sequence in the sense of [SV23]). In the sequel, we will only apply this
in the case that Y represents ordinary motivic cohomology, where Corollary 1.4 applies, not
requiring the full generality of the above construction.
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§2. The Cocycle Θ

We now focus on specializing the generalities in §1 to our case of interest. For the remainder
of this section, we work with schemes over Z unless otherwise stated.

Construction [SV23] For a primitive (𝑎, 𝑐) ∈ Z2, let 𝑆𝑎,𝑐 = ker(G2
𝑚

(𝑧1,𝑧2 ) ↦→𝑧𝑎1 𝑧𝑐2−−−−−−−−−−−→ G𝑚) be the
subgroup scheme defined by this kernel. For each index set 𝐼 ⊆ Z2 of primitive elements not
containing more than one representative of any element of Q, we define

𝑆𝐼 := ∪(𝑎,𝑐) ∈𝐼𝑆𝑎,𝑐,

and

𝑇𝐼 := ∪(𝑎,𝑐)≠(𝑏,𝑑) ∈𝐼𝑆𝑎,𝑐 ∩ 𝑆𝑏,𝑑 .
These are closed subschemes of G2

𝑚, which give rise to a Gysin filtration G2
𝑚 ⊇ 𝑆𝐼 ⊇ 𝑇𝐼 , whose

associated filtered object we will call 𝑍𝐼 .
If two index sets 𝐼 and 𝐽 have the same image in P1(Q), then we have natural isomorphisms

𝑆𝐼 ≃ 𝑆𝐽 and 𝑇𝐼 ≃ 𝑇𝐽 , yielding a natural equivalence 𝑍𝐼 ≃ 𝑍𝐽 . Furthermore, if 𝐼 ⊇ 𝐽, there
are natural maps 𝑋\𝑆𝐽 → 𝑋\𝑆𝐼 , 𝑋\𝑇𝐽 → 𝑋\𝑇𝐼 , and thus 𝑍𝐽 → 𝑍𝐼 . We can therefore take
the inverse limit across all possible index sets 𝐼 to get a filtered object 𝑍• := lim←−−𝐼 𝑍𝐼 . There
is a natural action of GL2(Z) =: Γ on the indexing set 𝐼, which descends to a Γ-action on
lim←−−𝐼 G

2
𝑚\𝑆𝐼 , lim←−−𝐼 G

2
𝑚\𝑇𝐼 , and to 𝑍•. This action will be examined more closely next section

where we will use “naive equivariant motivic cohomology” to construct Θ in a very natural
manner, but for now, we will only use that it provides a Γ-action on the homotopy groups.

We wish to compare 𝑍• with the constructions from [SV23]. For this, we will use the
following computational lemmas:

Lemma 2.1. The cohomology group 𝐻3,2(𝑍1) agrees with what [SV23] term 𝐾2/Z/𝐻2,2(G2
𝑚),

where 𝐾2/Z := lim−−→𝐼
𝐻2,2(G2

𝑚\𝑆𝐼 ).

Proof. First, note that there is a fiber sequence

lim←−−
𝐼

G2
𝑚\𝑆𝐼 → G2

𝑚 → 𝑍1,

which in turn provides us with a long exact sequence:

. . .→ 𝐻2,2(G2
𝑚) → lim−−→𝐻2,2(G2

𝑚\𝑆𝐼 ) = 𝐾2/Z → 𝐻3,2(𝑍1) → 𝐻3,2(G2
𝑚) → . . . .

Since the motivic cohomology of Z vanishes in degrees 𝐻3,2, 𝐻2,1 and 𝐻1,0, we find that
𝐻3,2(G2

𝑚) ≃ 𝐻3,2(Z) ⊕ 𝐻2,1(Z)⊕2 ⊕ 𝐻1,0(Z) = 0, and the claim follows. □

Lemma 2.2. The cohomology 𝐻∗,2(𝑍2) vanishes unless ∗ = 4, in which case 𝐻4,2(𝑍2) ≃
lim−−→𝐼

𝐻0,0(𝑇𝐼 ) =: 𝐾0/Z.

Proof. From the homotopy purity theorem, using smoothness of 𝑇𝐼 , we find that 𝑍2 ≃
lim←−−𝐼 Th(𝑇𝐼 ), and the claim then follows from the Thom isomorphism and the fact that 𝐻∗,0 of
smooth schemes is concentrated in degree 0. □

With these two lemmas in place, we are ready to get the main short exact sequence (which
could be obtained from the spectral sequence itself as well) of interest.
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Theorem 2.3. By taking cohomology of the fiber sequence lim←−−𝐼 Th𝑆𝐼\𝑇𝐼 (G2
𝑚\𝑇𝐼 ) → 𝑍1 → 𝑍2,

one obtains an exact sequence

0→ 𝐾2/Z/𝐻2,2(G2
𝑚) → lim−−→

𝐼

𝐻1,1(𝑆𝐼\𝑇𝐼 ) =: 𝐾1/Z → 𝐾0/Z.

Proof. Applying 𝐻∗,2 to the fiber sequence in the statement provides a long exact sequence

. . .→ 𝐻3,2(𝑍2) → 𝐻3,2(𝑍1) → lim−−→
𝐼

𝐻1,1(𝑆𝐼\𝑇𝐼 ) → 𝐻4,2(𝑍2) → 𝐻4,2(𝑍1) → . . . .

By Lemmas 2.1 and 2.2, we are done. □

Remark 2.4. Right exactness is harder to obtain at an integral level, but may be provable
by examining Picard groups of the unions of 𝑆𝑎,𝑐. The cokernel of 𝐾1/Z → 𝐾0/Z will be
precisely the entry 𝐸2,2

2 on the (2, 2) slot of the Coniveau-type spectral sequence associated to
our filtration. This will contribute to 𝐻4,2(G2

𝑚) = 0, so must vanish somewhere in the spectral
sequence. Since the grading on the 𝑑𝑟 -differential with gradings as in [SV23] is (𝑟, 1 − 𝑟), the
only possible contribution is if a class in grading 0 hits this group on the 𝐸2-page. This class
would have to live in 𝐸0,3

2 , which is lim−−→𝐼
𝐻3,2(G2

𝑚\𝑆𝐼 ), though this isomorphism could also be
obtained without recourse to the spectral sequence.

Although we do not have right exactness entirely from the above, we can still note that the
class 1 ∈ G𝑚 is in the image of this last map, just by an explicit construction with symbols,
so pulling back along the GL2(Z)-equivariant inclusion of this fixed point yields the extension
class Θ from [SV23]. Proposition 3.3.1 of [SV23] goes through practically verbatim to our
situation.

Trace maps can be defined in our situations on the level of motivic complexes, using the
orientation on the spectrum representing integral motivic cohomology to define proper push-
forwards ([Spi13], [MV99], [Lev08]). The results of SV §4.1 go through almost verbatim in
this situation, though we the details for time constraints. The only remark we make is that for
considering 𝑀 (0) , one should define this as the subgroup of 𝑀 fixed by all trace operators [𝑝]∗
for all primes 𝑝. This could have been done in [SV23] as well without changing the results
needed to lift the cocycle to 𝐾2/{−𝑧1,−𝑧2} (even though there they avoid the case 𝑝 is equal to
the characteristic).

Construction. For the specializations to Spec(Z[1/𝑁, 𝜇𝑁 ])-points, one can proceed by the
above constructions over the ring Z[1/𝑁], where our indexing sets 𝐼 are forced to avoid the
point Spec(Z[1/𝑁, 𝜇𝑁 ])

(1,𝜁𝑁 )−−−−−→ G2
𝑚,/Z[1/𝑁 ] .

The reason we need to invert 𝑁 is that, otherwise, for some prime 𝑝 dividing 𝑁 , there is
a point Spec(F 𝑝) → Spec(Z[𝜇𝑁 ]) → G2

𝑚 which will be in the intersection of every 𝑆𝐼 with
Spec(Z[𝜇𝑁 ]). By inverting 𝑁 , we allow an interesting theory to arise.

All in all, we can define 𝐾2/Z(𝑁) := lim−−→𝐼
𝐻2,2(G2

𝑚,/Z[1/𝑁 ]\𝑆𝐼 ), with out limit taken over
indexing sets 𝐼 such that 𝑆𝐼 ∩ Spec(Z[1/𝑁, 𝜇𝑁 ]) = ∅. This allows us to define a map

Spec(Z[1/𝑁, 𝜇𝑁 ]) → lim←−−
𝐼

G2
𝑚\𝑆𝐼 → G2

𝑚,

providing a map 𝐾2/Z(𝑁) → 𝐻2,2(Z[1/𝑁, 𝜇𝑁 ]). This map is equivariant for the natural

Γ̃1(𝑁) := {
[
𝑎 𝑏

𝑐 𝑑

]
∈ GL2(Z) : 𝑁 |𝑐, 𝑑 ≡ 1 mod 𝑁}-action on the source and trivial action
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on the target. It also maps the (image of the) class {−𝑧1,−𝑧2} to the class {−1,−𝜁𝑁 }, using
notation for these cup products as in [SV23].

The Galois action on Spec(Z[1/𝑁, 𝜇𝑁 ]) intertwines the action of Γ̃0 := {
[
𝑎 𝑏

𝑐 𝑑

]
∈

GL2(Z) : 𝑁 |𝑐} on lim−−→𝐼
G2
𝑚\𝑆𝐼 . Using the explicit cocycle Θ : Γ̃0 → 𝐾2/Z(𝑁)/{−𝑧1,−𝑧2}

that can be constructed for similar reasons to (loccit), this map just constructed provides a
cocycle Θ𝑁 : Γ̃0(𝑁) → 𝐾2(Z[1/𝑁, 𝜇𝑁 ])/(Γ̃0(𝑁) · {−1,−𝜁𝑁 }), as desired.
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§3. The Equivariant Perpsective

In this section, we provide a slightly different route to the Sharifi-Venkatesh construction of a
lift of the cocycle Θ to 𝐾2(𝑘 (G2

𝑚)) ⊗ Z[1/6] over a field. For the purposes of this secction,
we work over the base field Q, although the construction should also work for finite fields with
appropriate modifications.

We can construct a filtered motive (or motivic spectrum) 𝑍• as in §2, working over Q now,
which comes with an action of Γ := GL2(Z). Applying the functor Hom(−, 𝐻Z ⊗ 𝑆0,2), with
𝐻Z the motivic spectrum representing ordinary motivic cohomology (resp. homs into Z(2)
if one prefers to work in the category of motives), we obtain a filtered object of the derived
category D(Z)

𝑌• = . . .→ 0→ 𝑌2 → 𝑌1 → 𝑌0
∼−→ 𝑌−1

∼−→ . . . ,

equipped with a Γ-action, and such that the cohomology groups 𝐻∗(𝑌𝑖) = 𝐻
∗,2
𝑚𝑜𝑡 (𝑍𝑖) com-

pute motivic cohomology in weight 2. The associated spectral sequence to 𝑌• is precisely the
Coniveau spectral sequence.

From here on out, we implicitly invert 6, writing Z′ := Z[1/6], working in D(Z[1/6]),
which will make the analysis much easier, motivic cohomology will implicitly be taken with
Z[1/6] coefficients unless otherwise stated. Let’s describe some of these cohomology groups
of 𝑌• explicitly:

Lemma 3.1. 𝐻∗(𝑌0) is concentrated in degree 2, given by 𝐻2,2(Q) ⊕ 𝐻1,1(Q)⊕2 ⊕ 𝐻0,0(Q).

Proof. Since 𝐻∗,2(G2
𝑚) ≃ 𝐻∗,2(Q) ⊕ 𝐻∗−1,1(Q)⊕2 ⊕ 𝐻∗−2,0(Q), we immediately get the sec-

ond part. For the first, the only possible nonzero contributions are from 𝐻0,2(Q) and 𝐻1,2(Q).
The spectral sequence from motivic cohomology to algebraic K-theory degenerates rationally,
𝐾3(Q)Q = 0, and 𝐾2(Q) ≃ 𝐾2 ≃ 𝐻2,2(Q), so both of these groups must have trivial rationaliza-
tion. We can therefore check if they are zero one prime at a time. By the Beilinson-Lichtenbaum
conjecture, this reduces us to computing étale cohomology. Any class in 𝐻1,2(Q) which is 𝑝-
torsion will provide a class in 𝐻0,2(Q,Z/𝑝Z), and since 𝐻−1,2(Q,Z/𝑝Z) = 0, we need only
show 𝐻0,2(Q,Z/𝑝Z) = 0. But 𝐻0,2(Q,Z/𝑝Z) = 𝐻0

�́�𝑡
(Q, 𝜇⊗2

𝑝 ), and for 𝑝 > 3, 𝜇⊗2
𝑝 has no

Galois fixed points, so this group is zero, and we win. □

Since 𝐻∗(𝑌2) computes 𝐻∗−4,0(lim←−−𝑇𝐼 ), we find that 𝐻∗(𝑌2) is concentrated in degree 4,
where it is given by

⊕
𝑥∈G2

𝑚
Z. We have exact triangles:

𝑌1 → 𝑌0 → 𝐻∗,2(𝑘 (G2
𝑚)),

and

𝑌2 → 𝑌1 →
⊕
𝐷

𝐻∗,1(𝑘 (𝐷)) [−2] .

Since 𝑘 (G2
𝑚) is a field, its weight 2 motivic cohomology is concentrated in cohomological

degrees [0, 2]. The rings 𝑘 (𝐷) are also fields, so the cohomology of the objects𝐻∗,1(𝑘 (𝐷)) [−2]
are nonzero only in cohomological degree 3, where it is 𝐻1,1(𝑘 (𝐷)).

Proposition 3.2. The object 𝑌1 has cohomology concentrated in degree 3, and the object
𝐻∗,2(𝑘 (G2

𝑚)) has cohomology concentrated in degree 2.

Proof. Using the second fiber sequence considered above, the fact that 𝑌2 has cohomology
in degree 4, and 𝐻∗,1(𝑘 (𝐷)) [−2] has cohomology concentrated in degree 3, we find that
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𝑌1 has cohomology concentrated in degrees [3, 4]. Since 𝑌0 has cohomology only in degree
2, and the cohomology of 𝐻∗,2(𝑘 (G2

𝑚)) is only possibly nonzero in degrees [0, 2], the first
fiber sequence shows that 𝑌1 has cohomology concentrated in degree [1, 3]. Thus, 𝑌1 has
cohomology concentrated in degree 3, and then the first fiber sequence shows 𝐻∗,2(𝑘 (G2

𝑚))
must have vanishing cohomology away from degree 2. □

It is time to introduce the second complex, arising from the comparison [SV23] make to
G2
𝑚\{1}. We can make the same sort of definitions as before, define 𝑊• using the Coniveau

filtration on G2
𝑚\{1}, this is a Γ-equivariant filtered motivic complex (or spectrum), which

comes equipped with a Γ-equivariant map to 𝑍•. Applying the functor Hom(−, 𝐻Z ⊗ 𝑆0,2) (or
Hom(−,Z(2))) again, we obtain a filtered object in D(Z[1/6]) which we term 𝑋•, equipped
with an action of Γ, and a Γ-equivariant map 𝑌• → 𝑋•. For the remainder of the paper, work in
the category D(Z[1/6])𝐵Γ of Γ-equivariant objects in D(Z[1/6])2

Lemma 3.3. There is a natural fiber sequence𝑌𝑖 → 𝑋𝑖 → Z′ [−3], where Z′ carries the trivial
Γ action, for 𝑖 ≤ 2.

Proof. Since the cofibers of 𝑌𝑖 → 𝑌𝑖−1 and 𝑋𝑖 → 𝑋𝑖−1 agree for 𝑖 ≤ 2 (both giving⊕
𝐷 𝐻

∗,1(𝑘 (𝐷)) [−2], 𝐷 a sum over divisors on G2
𝑚 resp G2

𝑚\{1}, 𝐻∗,2(𝑘 (G2
𝑚)), or 0), it

suffices to prove the claim with 𝑖 = 0. We use the homotopy purity theorem to get a cofiber
sequence of motivic spectra G2

𝑚\{1} → G2
𝑚 → Th{1} (G2

𝑚), note that Th{1} (G2
𝑚) ≃ P1 ⊗ P2,

and then use that 𝐻∗,2(P1 ⊗ P2) = 0 unless ∗ = 4, in which case it is Z′. □

Now, we have a map 𝑋0 → 𝐻∗,2(𝑘 (G2
𝑚)), and if we could split 𝑋0 → Z′ [−3], this would

allow us to define a map Z′ [−3] → 𝐻∗,2(𝑘 (G2
𝑚)), which would serve as a good candidate for

[Θ] ∈ 𝐻1(Γ, 𝐾2(𝑘 (G2
𝑚))). To split this map Γ-equivariantly, we would need to see that the map

Z′ [−4] → 𝑌0 = 𝐻2,2(G2
𝑚) [−2] is trivial. Using the formula [Ram18, Proposition 4.9] for

group cohomology of an amalgamation, that SL2(Z) = Z/4Z ∗Z/2Z Z/6Z, and that we have
inverted 6, we find that 𝐻𝑖 (Γ, 𝑀) = 𝐻𝑖 (SL2(Z), 𝑀)𝐶2 = 0 for 𝑖 > 1. Thus,

HomD (Z[1/6] )𝐵Γ (Z′ [−4], 𝐻2,2(G2
𝑚) [−2]) = 𝐻2(Γ, 𝐻2,2(G2

𝑚)) = 0.

Therefore, the map from Lemma 3.3 splits on the level of 𝑋0, and we get a Γ-equivariant map
𝜌 : Z′ [−3] → 𝐻2,2(G2

𝑚) [−2]. We come to the main theorem of this section:

Theorem 3.4. The class 𝜌 ∈ 𝐻1(Γ, 𝐻2,2(𝑘 (G2
𝑚)) [1/6]) is a lift of the class representing Θ

constructed earlier.

Proof. We will construct the following commutative diagram with exact rows

2This is probably not quite the derived category of Z[1/6] [Γ]-modules, but is close to it, and embeds into it by
a Schwede-Shipley argument.

7



𝑌0 = 𝐻2,2(G2
𝑚) [−2] 𝐻2,2(G2

𝑚) [−2]

𝑋0 = 𝐻∗,2(G2
𝑚\{1}) 𝐻2,2(𝑘 (G2

𝑚)) [−2] 𝑋1 [1]

Z′ [−3] 𝐾2 [−2] 𝑋1 [1] Z′ [−2]

𝐾2 [−2]
⊕

𝐷 𝑘 (𝐷)× [−2]
⊕

𝑥 Z
′ [−2] .

Let’s explain where this diagram comes from. The top left corner is the factorization𝑌0 → 𝑋0 →
𝐻2,2(𝑘 (G2

𝑚)) [−2]. The group 𝐾2, defined simply as the quotient 𝐻2,2(𝑘 (G2
𝑚))/𝐻2,2(G2

𝑚), fits
into a fiber sequence as pictured, and the map Z′ [−3] → 𝐾2 [−2] is precisely the image of 𝜌
under the quotient, which we wish to show is Θ. Since the top left rectangle has rows which are
fiber sequences, it is a homotopy pushout (= homotopy pullback), and this gives us exactness of
the middle two rows. There is an equivalence 𝐾2 [−2] ≃ 𝑌1 [1], and the map to 𝑋1 agrees with
the one defined previously. The map 𝑋1 [1] →

⊕
𝐷 𝑘 (𝐷)× [−2] is the canonical map arising

as cofib(𝑋2 → 𝑋1) [1]. The right-hand bottom rectangle is a map of short exact sequences
of Γ-modules now, so the map Z′ [−2] →

⊕
𝑥 Z
′ [−2] is uniquely determined. The cofiber

of 𝑋1 [1] →
⊕

𝐷 𝑘 (𝐷)× [−2] is given by 𝑋2 [2] =
⊕

𝑥≠1 Z
′ [−2], so the final map on the

right-hand-side is nothing but inclusion onto the Z′ [−2] · 1 summand.
The extension class in 𝐻1(Γ, 𝐾2) that 𝜌 lifts is the short exact sequence given by the

rightmost sequence (well strictly speaking shifted down to live in the heart) of the second to
last row in the diagram above. This is the same as the extension on the very bottom pulled back
along {1 ∈ G2

𝑚} : Z′ →
⊕

𝑥 Z
′, which is precisely how the class of Θ was defined to begin

with, proving the claim. □
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