
D-MODULES AND CRYSTALLINE D-MODULES

LOGAN HYSLOP

1. Standard Disclaimers

This is a brief note to accompany my talk for Math 216. We will discuss the geometric approach

to de Rham cohomology expanding on the discussion from Bhatt chapter 2, the ideas originally

due (in characteristic zero) to Gaitsgory-Rozenblyum.

2. Characteristic 0

To begin, let k be a field of characteristic zero. Given a smooth k-scheme X, one would

like to understand the de Rham cohomology of X, possibly with coefficients, whatever these

coefficients should be. The point of this note is to explain a stacky approach to determining what

“coefficients” for a cohomology theory means. Let’s start with a definition:

Definition 1. Suppose that X is a smooth k-scheme. The de Rham stack XdR is the stack with

R-valued points XdR(R) = X(Rred), where Rred is the quotient of R by its nilradical.

Remark 1. We mention the general underlying construction used above, the uninterested reader

can safely skip this remark on a first reading. If we have some theory f, e.g., “f = de Rham,” and

we want to define “f-ification,” there is a general procedure which Bhatt terms transmutation. The

strategy proceeds by first defining what the f-ification of the affine lineGa is, specified by some ring

stack Gf
a (over some fixed base ring/stack R). Transmutation is the process by which we assign

to a scheme X the stack with S-valued points Xf (S) := Hom/R(Spec(Gf
a(S)), X), interpreted in

the sense of derived algebraic geometry. For all the stacks appearing in this note, we will have

some quasi-ideal I → Ga on the ring scheme Ga
1, which is enough to determine a ring structure

on cone(I → Ga), making it into a ring stack. The above case takes I = Ĝa = Spec(k[[t]]).

Proposition 1. For X/k smooth, the cohomology of the structure sheaf on XdR computes the de

Rham cohomology of X, that is:

RΓ(XdR,OXdR) ≃ RΓ(X,Ω•
X/k) ∈ D(k).

Proof. See Bhatt’s lecture notes, or work this out explicitly as an exercise. □

In this way, we can think of vector bundles on XdR as “coefficients for de Rham cohomology,”

and if E is a vector bundle on XdR, we can define H i(RΓ(XdR, E)) := H i
dR(X,E). Let’s be

explicit about what this means by working with affine space (the general case is an exercise using

the model set forth in what follows)

Date: mm/dd/yyyy.
1That is to say, I is some a Ga-module structure, such that the morphism d : I → Ga is Ga-linear and for

x, y ∈ I, (dx) · y = (dy) · x.
1

https://www.math.ias.edu/~bhatt/teaching/mat549f22/lectures.pdf
https://arxiv.org/abs/1111.2087
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Lemma 1. Vector bundles on (An
k)

dR are equivalent to pairs (E,∇), where E is a vector bundle

on An
k and ∇ : E → E ⊗OAn Ω1

An/k is a flat connection on E.

Proof. Note that An is an fpqc cover of (An)dR, with An ×(An)dR An ≃ An × Ân. By fpqc descent

for vector bundles, we can determine Vect((An)dR) as the limit in categories of the first steps in

the Cech nerve:

Vect(An) Vect(An × Ân) Vect(An × Ân × Ân).

The data of a vector bundle on the de Rham stack thus corresponds to a vector bundle E on An,

an isomorphism

E ⊗k[x1,...,xn],a k[x1, ..., xn][[t1, ..., tn]]
∼−→ E ⊗k[x1,...,xn] k[x1, ..., xn][[t1, ..., tn]],

where a denotes the fact that the map k[x1, . . . , xn] → k[x1, . . . , xn][[t1, . . . tn]] takes xi to xi + ti,

satisfying some compatibility.

Such an isomorphism can equivalently be viewed as the data of a map

ψ : E → E ⊗k[x1,...,xn] k[x1, ..., xn][[t1, ..., tn]]

such that ψ(xie) = ψ(e) · (xi + ti), and ψ(e) = e ⊗ 1 modulo (t1, ..., tn). We may write ψ(e) =∑
I ψI(e)⊗ tI , using multi-index notation. Suggestively, for the multi-index which is 1 in degree

i, we will call this index ∂i, and multiplication of these partial derivatives will denote sums of

these multi-indices. The compatibility here says that ψ0(e) = e, and∑
I

∑
J

ψI(ψJ(e))⊗ tIyJ =
∑
I

ψI(e)⊗ (t+ y)I . (2.1)

This shows in particular that (since we are in characteristic zero), ψI is completely determined

by ψ∂i for i = 1, ..., n.

Define a connection ∇ : E → E ⊗k[x1,...,xn] Ω
1
k[x1,...,xn]/k

by the formula e 7→ ψ∂i(e)⊗ dxi.
2 Note

that ψ∂i = ∇(∂i), which is why we have chosen this notation. This is indeed a connection, as

ψ(xie) =
∑

I ψI(e)⊗ tI(xi+ ti) = e⊗ ti+
∑
xiψI(e)⊗ tI , so ∇(xie) = e⊗dxi+xi∇(e), as claimed.

Equation 2.1 says that ψ∂i(ψ∂j(e)) = ψ∂i∂j(e) = ψ∂j(ψ∂i(e)), which is precisely the condition that

the connection is flat. One can trace back through this proof to recover ψ from a given flat

connection. □

So, in characteristic zero, we get what we expect for coefficients for de Rham cohomology in

analogy with differential geometry. It should be stressed that the assumption k has characteristic

zero is absolutely crucial above: for concreteness, if we take n = 1, then ψ is the data of

ψ(e) =
∑
i≥0

1

i!
∇(∂x)

i(e)⊗ ti.

2We are sending ti to dxi and ignoring (t1, ..., tn)
2.
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3. The Characteristic p Situation

In this section we will restrict to working over a perfect field of characteristic p > 0. What goes

wrong when we try to run the same machinery from above?

Definition 2. For X/k a finite type qcqs scheme, define the naive de Rham stack as before:

XndR(R) = X(Rred).

Exercise. Using fpqc descent for cohomology, show that H0(RΓ(GdR
a ,OGdR

a
)) = k. (Hint: setup

the Cech nerve similar to the start of Lemma 1, though with cohomology groups in place of the

category of vector bundles.)

If we were in characteristic zero, this would be all well in good, since there we live in the fairy

tale land where H0
dR(A1

k) ≃ k. This is not true in positive characteristic, as dxp = pxp−1dx = 0,

for instance.3 Working on the Ga-case, vector bundles on GndR
a are identified with vector bundles

E on Ga equipped with ψ : E → E ⊗k[x] k[x][[t]] satisfying ψ(xe) = ψ(e)(x+ t), ψ(e) = e mod t,

and 2.1. Rewriting 2.1 with ψ(e) =
∑

i≥0 ψi(e)⊗ ti, we get that∑
i≥0

∑
j≥0

ψi(ψj(e))⊗ tiyj =
∑
i,j

ψi+j(e)⊗
(
i+ j

i

)
tiyj.

This says that not only do we have the data of a flat connection ∇ with ∇(∂x)
p = 0, but we also

have a system of “formal divided powers” for ∇, so vector bundles on GndR
a are already fairly

complicated.

So, what can we do to improve the situation? If we naively use power series in our definitions

above, we end up needing the data of divided powers of ∇. One idea is to move these divided

powers from ∇ to the powers of t. Explicitly, let G♯
a = Spec(Z[t, t2/2!, . . . , tn/n!, . . .]⊗Z k) be the

divided power envelope of Ga. This is no longer a finite type k-scheme, but gives us a well-defined

quasi-ideal of Ga. We make the following definition:

Definition 3. The stack GdR
a is the ring stack Cone(G♯

a → Ga). The de Rhamification of a

general k-scheme X is defined via transmutation.

One can show that wheneverX is smooth, RΓ(XdR,OXdR) ≃ RΓ(X,Ω•
X/k) ∈ D(k), as we would

hope. Before discussing coefficients, we need to introduce a new kind of curvature: p-curvature.

If D is a derivation on a scheme X/k, then since Dp(xy) =
∑

i

(
p
i

)
Di(x)Dp−i(y) = Dp(x)y +

xDp(y), Dp is also a derivation. The p-curvature of a connection ∇ is the measure of the failure

of ∇(D)p = ∇(Dp). Classical D-modules correspond to vector bundles with flat connection and

zero p-curvature, but it turns out these will not quite be sufficient for our purposes. To read more

about p-curvature, see §5 of Katz.

Vector bundles on this stack no longer identify with D-modules as in Lemma 1, but rather with

so-called crystalline D-modules, to be explained in the talk:

3The Cartier isomorphism provides a very clean connection between the Frobenius and de Rham cohomology

in characteristic p, generalizing what one sees on A1.

http://www.numdam.org/article/PMIHES_1970__39__175_0.pdf
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Lemma 2. When X/k is smooth, vector bundles on XdR identify with pairs (E,∇) with E a

vector bundle on X, ∇ : E → E ⊗OX
Ω1

X/k is a flat connection with nilpotent p-curvature.

Proof. We handle only the case of An, leaving the general case to the reader (for general X, use

the pd-envelope of the small diagonals X → X × X, X → X × X × X to get a similar story).

Denoting by An,♯ := (G♯
a)

×n, Vect((An)dR) is the limit of

Vect(An) Vect(An × An,♯) Vect(An × An,♯ × An,♯).

For a multi-index I = (i1, ..., in), let’s write t(I) for the divided power element
t
i1
1 ...tinn
i1!...in!

4. As

in Lemma 1, a vector bundle on the de Rham stack corresponds to a vector bundle E on An

equipped with a map

ψ : E → E ⊗k[x1,...,xn] k[x1, ..., xn][t
(I)]

ψ(e) =
∑

I ψI(e)⊗ t(I), ψ0(e) = e. The compatibility criterion (2.1) now takes on the form∑
I

∑
J

ψI(ψJ(e))⊗ t(I)y(J) =
∑
I

ψI(e)⊗ (t+ y)(I) =
∑
I,J

ψI+J(e)⊗ t(I)t(J). (3.2)

Again, everything is determined by ψ∂j for j = 1, ..., n. The formula ∇(e) =
∑n

j=1 ψ∂j(e)dxj
defines a flat connection by essentially the same proof as lemma 1. The condition that ∇ have

nilpotent p-curvature translates to the fact that for some m, and all I with |I| > m, we have

ψI(e) = 0, which follows immediately from the tensor product defined above. □

The actual talk will review a bit of the above, but focus more on the D-module perspective on

these de Rham coefficients.

4The denominators of course aren’t invertible in k for I >> 0, this statement makes sense however since these

generators are adjoined formally with these relations imposed
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