
A BRIEF TOUR THROUGH FUKAYA CATEGORIES AND HOCHSCHILD
HOMOLOGY

LOGAN HYSLOP

Abstract. In this final project, we discuss some applications of Hochschild ho-
mology to the study of Fukaya categories, with a particular focus on the case of
cotangent bundles. Many proofs will be omitted, opting to cite the source material
(in part because reading all of the proofs for the information presented would take
far too much time to get this in by the deadline), and when possible, we will aim
to use the language of E1-algebras instead of A∞-algebras, which serve as point-set
models for the former. In §1, we will introduce some of the main players in this
paper, and some of the main theorems we will discuss later. §2 will briefly describe
the wrapped Fukaya category associated to a Liouville manifold (𝑀, 𝜆), after which
we introduce the String topology category of Blumberg-Cohen-Teleman, and prove
that it is equivalent to a module category over Σ∞

+ Ω𝑀 when 𝑀 is a suitably nice
manifold. Finally, §4 will give an overview of results on the Hochschild homology
of these categories, and in §5, we will compute some examples.

§1. Introduction

Hochschild homology (over a base ring 𝑅) is an invariant associated to a E1-ring spectrum
(or more generally a compactly generated1 stable ∞-category) 𝑆 that has recently found itself
center stage in several areas of mathematics. From it one can obtain cyclic invariants, which
have recently been used in p-adic geometry to define a new cohomology theory leading to
the development of prismatic cohomology, and was also utilized in homotopy theory in the
disproof of the only remaining conjecture of Ravenel- the telescope conjecture. Here we turn
our focus to applications of Hochschild homology to the study of symplectic geometry by way
of the (wrapped) Fukaya category. Below, we will introduce the wrapped Fukaya category in
the context of what has been discussed in class. Abouzaid proves the following theorem:

Theorem 1.1 (Abouzaid, [abouzaid2010], Theorem 1.1). Let 𝑀 be a Liouville manifold, W a
full subcategory of its wrapped Fukaya category with a finite set of split generators, and let B be
a full subcategory of W with finitely many objects. There is a map OC : HH∗(W) → SH∗(𝑀),
where SH∗(𝑀) is the symplectic cohomology of 𝑀 , such that if the image of the identity class
1 ∈ 𝐻∗(𝑀) → SH∗(𝑀) is in the image of the composite HH∗(B) → HH∗(W) → SH∗(𝑀),
then B split-generates W .

We will give a brief overview of this theorem in §4, in particular stating it a bit more
properly, and then use it to compute some examples in §5.

This map OC can be realized on the categorical level in the special case that 𝑀 = 𝑇∗𝑁
is the cotangent bundle associated to a suitably nice manifold 𝑁 . In this case, one can prove
that there is an equivalence between 𝑊 (𝑀) and the so-called string topology category S𝑁 of
𝑁 , which, when 𝑁 is sufficiently nice, one can prove to be equivalent to the category of (left)
modules over Σ∞

+ Ω𝑁 ⊗ 𝑅2.

1Or using the machinery of Efimov, dualizable.
2In particular, this is one case where one would expect the Fukaya category to refine to a category equivalent to

Σ∞
+ Ω𝑁-modules, that can be tensored with a commutative discrete ring to get back the ordinary Fukaya category

over 𝑅.
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There were many other papers that I wanted to include in this project, but due to time
constraints, many had to be cut so that this would actually get done. As one example, Sheel
Ganatra [Gan22] has studied how the open-closed map (on the level of chains) interacts with the
𝑆1-equivariant structure on the source in target, allowing him to prove facts about the Hodge-de
Rham degeneration in a purely symplectic fashion.
Conventions

• We fix a base ring 𝑅 some field, sayQ orC, implicit in our notation. Hochschild homology
will always be assumed to be taken over 𝑅.

• We freely use the language of Lurie [Lur17], and identify (triangulated) dg-categories
with their stable enhancements.

• When discussing spectra, Σ∞
+ is the (monoidal) functor taking a space to its suspension

spectrum, and S = Σ∞
+ ∗ is the unit for the smash product in the category of spectra, the

sphere spectrum.

• Keeping with the above theme, we often identify a discrete commutative ring 𝑅 with
the associated Eilenberg-MacLane spectrum. Since modules over the E∞−ring 𝑅 are
equivalent to the derived category D(𝑅), we will often adopt the more homotopical
notations, e.g., choosing to write Σ∞

+ 𝑀 ⊗S 𝑅 ∈ D(𝑅) for the 𝑅-module 𝐶∗(𝑀, 𝑅) of
singular chains on 𝑀 .

• We will sometimes say category to mean ∞-category when the context is clear, and all
tensor products are assumed to be derived unless otherwise specified.

• I generally like to have some claims I prove myself throughout, though these will certainly
be able to be found in the literature. I will include a lbefore any proof that I did as an
exercise.
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§2. The Wrapped Fukaya Category

Fix (𝑀,𝜔) a symplectic manifold with exact symplectic form 𝜔.

Definition 2.1. We say that a vector field 𝑋 on a symplectic manifold (𝑀,𝜔) is Liouville if
𝜄𝑋𝜔 = 𝜆 for some 1-form 𝜆 with 𝑑𝜆 = 𝜔. We further say that 𝑀 is a Liouville manifold if
there is a compact submanifold 𝑁 ⊆ 𝑀 with boundary 𝜕𝑁 such that 𝜆 |𝜕𝑁 is a contact form,
and 𝑀\𝑁 can be identified with (1,∞) × 𝜕𝑁 with 𝜔 |𝑀\𝑁 given by 𝑑 (𝑟𝜆 |𝜕𝑁 ), where 𝑟 is the
coordinate on (1,∞).

Example 2.2. Let 𝑁 be a smooth closed oriented 𝑛-dimensional manifold, and consider the
symplectic manifold 𝑀 = (𝑇∗𝑁, 𝑑𝑝∧ 𝑑𝑞), where 𝑞 is the coordinate on 𝑁 and 𝑝 the coordinate
on the cotangent space at a point. Then, using the Liouville vector field 𝑋 = 𝑝𝜕𝑝, this manifold is
Liouville with the form 𝜄𝑋𝜔 = 𝜄𝑋 (𝑑𝑝∧ 𝑑𝑞) = 𝑝𝑑𝑞3. To see that this is Liouville, we can choose
a Riemannian metric 𝑔 on 𝑁 (denote 𝑔∗ the induced bilinear form on the cotangent space),
take the closed unit disk bundle in 𝐷 ⊆ 𝑇∗𝑁 as our compact submanifold. The boundary
𝜕𝐷 is the unit sphere bundle, and taking 𝑟 = |𝑝 |, we have that 𝑀\𝐷 ≃ 𝜕𝐷 × (1,∞) by
scaling. (l) Since this is an important point, let’s check in some detail that 𝜆 |𝜕𝐷 is a contact
form: when we restrict to 𝜕𝐷, our form, still takes the form 𝑝𝑑𝑞, and we have to check that
(𝑝𝑑𝑞) ∧ (𝑑 (𝑝𝑑𝑞)∧𝑛−1) is nonzero. This is pulled back from 𝑝𝑑𝑞 under 𝑖 : 𝜕𝐷 → 𝑇∗𝑁 .
Pulling it back further under 𝜋 : 𝑇∗𝑁\𝐷 ≃ 𝜕𝐷 × (1,∞) → 𝜕𝐷 gives the form 𝑝

| 𝑝 | 𝑑𝑞 (this
form is also mentioned in [Coh15]). We can now note that, in local coordinates, we have
that 𝜕𝑝𝑖 (𝑔∗(𝑝, 𝑝)) = 𝜕𝑝𝑖

∑
𝑘, 𝑗 𝑔

𝑘 𝑗 𝑝𝑘 𝑝 𝑗 =
∑
𝑘 2𝑔𝑘𝑖𝑝𝑘 =

2𝑔∗ (𝑝,𝑝𝑖 )
𝑝𝑖

(and is zero at points where

𝑝𝑖 = 0). So, 𝑑 1
| 𝑝 | (which is differentiable on 𝑇∗𝑁\𝐷) is equal to −

∑𝑛
𝑖=1 𝑔

∗ (𝑝,𝑝𝑖 )
𝑝𝑖 · | 𝑝 |3

𝑑𝑝𝑖 plus some
terms involving Christoffel symbols of the first time which we ignore since they have 𝑑𝑞 𝑗s
in them which will vanish in the final tensor expression we are after (which if it has one 𝑑𝑞 𝑗
from one of these has at least 𝑛 + 1 terms of the form 𝑑𝑞𝑘 , so two must coincide and that term
vanishes). We then have that 𝑑 ( 𝑝| 𝑝 | 𝑑𝑞) =

1
| 𝑝 |𝜔−∑𝑛

𝑗=1

∑𝑛
𝑖=1 𝑝 𝑗𝑔 (𝑝,𝑝𝑖 )
𝑝𝑖 | 𝑝 |3

𝑑𝑝𝑖 ∧ 𝑑𝑞 𝑗 , plus some terms
attached to 𝑑𝑞 𝑗 ∧ 𝑑𝑞𝑘 (again ignored), and we note that the exterior product of this second
expression with 𝑝𝑑𝑞 is zero, since it is −∑

𝑗 ,𝑘

∑𝑛
𝑖=1 𝑝 𝑗 𝑝𝑘𝑔 (𝑝,𝑝𝑖 )

𝑝𝑖 | 𝑝 |3
𝑑𝑝𝑖 ∧ 𝑑𝑞 𝑗 ∧ 𝑑𝑞𝑘 and we can

match up the terms for 𝑗 < 𝑘 which cancel out those for 𝑗 > 𝑘 . Thus, we in fact have that
𝜋∗(𝑖∗(𝑝𝑑𝑞 ∧ (𝑑𝑝 ∧ 𝑑𝑞)∧𝑛−1)) = 1

| 𝑝 |𝑛 (𝑝𝑑𝑞) ∧ 𝜔
∧𝑛−1, which is necessarily nonzero since we

can multiply by |𝑝 |𝑛 to get (𝑝𝑑𝑞) ∧ 𝜔∧𝑛−1, which has derivative 𝜔∧𝑛, a volume form. The last
condition is clear.

Now, we recall from [Aur] how to define the wrapped Fukaya category W (𝑀) associated
to a Liouville manifold 𝑀 . We proceed similarly to in class, defining W (𝑀) to have objects
exact Lagrangian submanifolds 𝐿 ⊆ 𝑀 subject to the condition that they are invariant under the
𝜆 flow outside a compact set, with 𝜆 |𝐿 compactly supported. In the cotangent space example,
the fiber over any point 𝑇∗

𝑥𝑁 gives a Lagrangian submanifold, the flow associated to 𝑝𝜕𝑝 is
𝜙𝑡 (𝑝, 𝑞) = (𝑒𝑡 𝑝, 𝑞), which in fact fixes 𝑇∗

𝑥𝑁 entirely, and 𝑝𝑑𝑞 |𝑇∗
𝑥𝑁 = 0 since 𝑞 is constant.

Hamiltonian isotopy is now refined to enforce that our Hamiltonians must, outside a compact
subset, take on the form 𝐻 : (1,∞) × 𝜕𝑁 → R, 𝐻 (𝑟, 𝑥) = 𝑟2. We then have that, as with the
ordinary Fukaya category, maps between Lagrangians 𝐿 and 𝐿′ are given by intersection points
of 𝐿 and 𝜙1

𝐻
(𝐿′) (at least when the intersection is transverse).

When the intersection is not transverse, we may need to modify 𝐿 by a Hamiltonian isotopy

3The original reference [Coh15] says that −𝑞𝑑𝑝 is the Liouville form which I believe to be a typo.
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such that the same conditions as before hold, and then work with that. For the modifications to
the construction of the higher 𝐴∞-operations, see [Aur].

We will take a particular interest at first in the conormal wrapped Fukaya category
W𝑐𝑜𝑛 (𝑇∗𝑁). This is the wrapped Fukaya category with objects N ∗𝐷 for 𝐷 ⊆ 𝑁 a closed
oriented connected smooth submanifold, and N ∗𝐷 the conormal bundle to 𝐷, i.e., N ∗𝐷 =

{ 𝑓 ∈ 𝑇∗𝑁 : 𝑓 |𝐷 = 0}. We have:

Lemma 2.3. The conormal bundle N ∗𝐷 is a Lagrangian submanifold, fixed by the 𝜆-flow, with
𝜆 |N ∗𝐷 = 0.

Proof. l Let 𝐷 ⊆ 𝑁 be as above. Then at any point, choose suitable local coordinates
extending local coordinates on𝐷 so that𝐷 has coordinates (𝑞1, . . . , 𝑞𝑟 ) and 𝑁 local coordinates
𝑞1, . . . , 𝑞𝑟 , 𝑞𝑟+1, . . . , 𝑞𝑛. If the dual coordinates to these are given by 𝑝1, . . . , 𝑝𝑛, then we
have that N ∗𝐷 has local coordinates 𝑝𝑟+1, . . . , 𝑝𝑛 at this point, and in particular, 𝜆 |N ∗𝐷 =∑
𝑖 𝑝𝑖 ∧ 𝑑𝑞𝑖 |N ∗𝐷 = 0, which also implies that N ∗𝐷 is a Lagrangian submanifold, as it has

the correct dimension and 𝜔 = 𝑑𝜆. Since at any point 𝑞 ∈ 𝐷, N ∗
𝑞𝐷 ⊆ 𝑇∗

𝑞𝑁 is a subspace, it
is invariant under scaling, and in particular, N ∗𝐷 is invariant under the 𝜆 flow, as described
above, giving the claim. □
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§3. The String Topology Category

For this section, we fix a connected, closed, oriented, n-dimensional smooth manifold 𝑁 . Further
assume that 𝑁 is equipped with a collection D = {𝐷𝑖 ⊆ 𝑁} of smooth submanifolds called
“D-branes”, which will later be taken to be the collection of smooth connected oriented closed
submanifolds of 𝑁 . To any pair 𝐷1, 𝐷2 of 𝐷-branes, we associate the path space from 𝐷1 to
𝐷2:

Definition 3.1. Let 𝐷1 and 𝐷2 be two 𝐷-branes. The path space from 𝐷1 to 𝐷2 is P𝐷1,𝐷2 =

{𝛾 : [0, 1] → 𝑁 : 𝛾(0) ∈ 𝐷1, 𝛾(1) ∈ 𝐷2}.

For example, if 𝐷1 and 𝐷2 are both points, then P𝐷1,𝐷2 is (non-canonically) equivalent to
Ω𝑁 , and if 𝐷1 = 𝐷2 = 𝑁 , then P𝐷1,𝐷2 is the free path space of 𝑁 , which is homotopic to 𝑁 .
To these data, Blumberg-Cohen-Telemen associate:

Definition 3.2. Let 𝑁 , D be as above. The string topology category SD
𝑁

over a field 𝑘

is a DG category which has objects the elements of D, and the mapping spaces are given
by HomSD

𝑁
(𝐷1, 𝐷2) ≃ 𝐻∗−dim𝐷1 (P𝐷1,𝐷2 , 𝑘). The composition is defined using open-closed

cobordisms and umkehr maps as in [CHV06] section 3.3.

Remark 3.3. One can also define the above category over spectra replacing 𝐻∗(P𝐷1,𝐷2 , 𝑘)
with Σ∞

+ P𝐷1,𝐷2 and defining the operations on the level of spectra as in [BCT09] 2.12.

The compositions arise from considering so-called open-closed cobordisms between D-
branes, and using umkehr maps defined similarly to the Chas-Sullivan product on the homology
of the free loop space 𝐿𝑀 of a manifold 𝑀 (See [CHV06]).

Now, fix a basepoint 𝑥0 ∈ 𝑁 . We have that, for a 𝐷-brane 𝐷, the homotopy fiber of 𝐷 → 𝑁

is modeled by P𝑥0,𝐷 . We can use this to get the following commutative diagram, for any pair of
𝐷-branes 𝐷1, 𝐷2, where the bottom rectangle, bottom right square, right rectangle, and total
square are homotopy cartesian, which implies every square in the diagram is as well:

Ω𝑁 P𝑥0,𝐷1 ∗

P𝑥0,𝐷2 P𝐷1,𝐷2 𝐷2

∗ 𝐷1 𝑁.

In the case 𝐷1 = 𝑥0, we adopt the notation from [BCT09] and write P𝑥0,𝐷 = 𝐹𝐷 , the homotopy
fiber of 𝐷 → 𝑁 . Blumberg-Cohen-Teleman implicitly use the following fact from homotopy
theory (see [(ht])

Proposition 3.4. Let 𝐸 → 𝐹 → 𝑀 be a homotopy fiber sequence. Then 𝐸 has a Ω𝑀-module
structure, and ∗ ×Ω𝑀 𝐸 ≃ 𝐹. In particular, this holds on the stable level and after passing to
chains.

□
From this, we conclude:

Lemma 3.5. Assume that 𝐷 has the homotopy type of a finite CW complex. Then 𝐶∗(𝐹𝐷) is a
compact object in the category of 𝐶∗(Ω𝑁)-modules.
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Proof. (l) From the equivalence in Proposition 3.4 and the fiber sequence Ω𝑁 → 𝐹𝐷 → 𝐷,
we have that 𝐶∗(Ω𝑁) ⊗𝐶∗ (Ω𝐷) 𝑘 ≃ 𝐶∗(𝐹𝐷). Since tensor product sends compact objects to
compact objects, it suffices to show that 𝑘 is a compact 𝐶∗(Ω𝐷)-module. There is a canonical
functor (abusively considering 𝐷 as an ∞-groupoid), 𝐹 : 𝐷 → 𝐶∗(Ω𝐷) − Mod taking the
basepoint in 𝐷 to 𝐶∗(Ω𝐷). We have colim 𝐹 ≃ 𝑘 ⊗𝐶∗ (Ω𝐷) 𝐶∗(Ω)𝐷 ≃ 𝑘 , and since 𝐷 has the
homotopy type of a finite CW complex, this colimit is finite, so by Lurie, its colimit, 𝑘 , is a
compact 𝐶 ∗ (Ω𝐷)-module. □

Lemma 3.6. There is an equivalence of 𝑘-modules 𝐶∗(P𝐷1,𝐷2) ≃ 𝐶∗(𝐹𝐷1) ⊗𝐶∗ (Ω𝑁 ) 𝐶∗(𝐹𝐷2).

Proof. We note as in [BCT09] that
𝐶∗(𝐹𝐷1) ⊗𝐶∗ (Ω𝑁 ) 𝐶∗(𝐹𝐷2) ≃ 𝑘 ⊗𝐶∗ (Ω𝐷1 ) 𝐶∗(Ω𝑁) ⊗𝐶∗ (Ω𝑁 ) 𝐶∗(𝐹𝐷2)

≃ 𝑘 ⊗𝐶∗ (Ω𝐷1 ) 𝐶 (𝐹𝐷2) ≃ 𝐶∗(P𝐷1,𝐷2)
where we have used Proposition 3.4 applied to the fiber sequence 𝐹𝐷2 → P𝐷1,𝐷2 → 𝐷1 in the
second step. □

With all this background in place, we recover:

Theorem 3.7. The category SD
𝑁

is equivalent to the full subcategory of mod(𝐶∗(Ω𝑁)) consist-
ing of the objects 𝐶∗(𝐹𝐷).

Sketch. This uses the above computations to see that the functor HomS∗
𝑁
(𝑥0,−) has the ap-

propriate image, and that Hom𝐶∗ (Ω𝑁 ) (𝐶∗(𝐹𝐷), 𝐶∗(𝐹𝐷′)) ≃ 𝐶∗(P𝐷,𝐷′) by a dualizable object
argument and Lemma 3.5. □

We care about the String topology category described above, since it connects back to
the conormal Wrapped Fukaya category W𝑐𝑜𝑛 (𝑇∗𝑁). In particular, we will investigate the
following theorem:

Theorem 3.8. Suppose that 𝑁 is a connected, oriented, closed manifold. Then there is an
𝐴∞-quasi-equivalence W𝑐𝑜𝑛 (𝑇∗𝑁) → SD

𝑁
taking the conormal bundle of a submanifold 𝐷 of

𝑁 in W𝑐𝑜𝑛 (𝑇∗𝑁) to the object represented by 𝐷 in SD
𝑁

.

This was conjectured in Blumberg-Cohen-Teleman [BCT09] and later proven by Cohen-
Ganatra in [Coh15]. The proof goes through constructing a Morse-theoretic model for the string
topology category, and then using this to construct the desired quasi-equivalence.
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§4. Hochschild Homology

Hochschild homology (in one formulation) can be thought of as the “universal target of the
trace map.” For us, it will be useful due to the following theorem proved by Abouzaid:

Theorem 4.1. Let 𝑀 be a Liouville manifold, W a full triangulated subcategory of its wrapped
Fukaya category with a finite set of split generators, and let B be a full subcategory of W
with finitely many objects. There is a map OC : HH∗(W) → SH∗(𝑀), where SH∗(𝑀) is the
symplectic cohomology of𝑀 , such that if the image of the identity class 1 ∈ 𝐻∗(𝑀) → SH∗(𝑀)
is in the image of the composite HH∗(B) → HH∗(W) → SH∗(𝑀), then B split-generates W .

Here, by HH∗(B), we may take this to mean either an explicit chain complex as defined
in [Gan22], or we may consider it abstractly as the Hochschild homology of End(⊕𝐿∈Ob(B)𝐿)
considered as an E1-𝑅-algebra, using Morita invariance. We are abusing terminology in the
statement and assuming that W is a triangulated subcategory of (twisted complexes) for the
wrapped Fukaya category of 𝑀 .

The strategy of proof proceeds by, for any 𝐾 ∈ W , constructing a bimodule 𝐴𝐾 associated
to 𝐾 , from the Yoneda modules associated to 𝐾 itself. Abouzaid constructs a diagonal map
B → 𝐴𝐾 , and then constructs the following commutative diagram, commuting up to signs:

HH∗(B) HH∗(B, 𝐴𝐾 )

SH∗(𝑀) HW∗(𝐾, 𝐾)

where HW∗(𝐾, 𝐾) = EndW (𝐾) is the wrapped Floer homology of 𝐾 . The assumptions of the
theorem imply that the identity class 1𝐾 is in the image of the map from Hochschild homology
of B, and Abouzaid proves that, if this is the case, then K is in the full subcategory of objects
split generated by B. We can think of this statement through the heuristic “if the identity of an
object 𝐾 arises as a linear combination of traces of endomorphisms of objects in B, then that
object can be built out of objects of B.”

This theorem is useful to us, since it allows us to give moral justification for the following:

Theorem 4.2. (Twisted modules over) The wrapped Fukaya category 𝑇∗𝑀 of a closed oriented
connected smooth manifold 𝑀 is equivalent to the category of 𝐶∗(Ω𝑀)-modules.

“proof”. From the results of §3, we know that the conormal wrapped Fukaya category
W𝑐𝑜𝑛 (𝑇∗𝑀) is a full subcategory of compact 𝐶∗(Ω𝑀)-modules, and in particular, is gen-
erated by the cotangent fiber 𝑇∗

𝑞𝑀 of any point 𝑞 ∈ 𝑀 . Nikolaus-Scholze [NS18] IV.3.3 prove
that THH(Σ∞

+ Ω𝑀) ≃ Σ∞
+ 𝐿𝑀 , and tensoring with 𝑅 gives HH∗(𝐶∗(Ω𝑀)) ≃ 𝐶∗(𝐿𝑀), where

𝐿𝑀 denotes the free loop space of 𝑀 . By Morita theory, HH∗(W𝑐𝑜𝑛 (𝑇∗𝑀)) ≃ 𝐶∗(𝐿𝑀), which
was shown in [Vit18] (see also [AS09]) to be equivalent to SH∗(𝑀).4 Due to this equivalence,
the conditions of the theorem are satisfied, so taking any object 𝐿 ∈ W (𝑇∗𝑀), we can take W
in the statement to be the full subcategory split generated by 𝐿 and 𝑇𝑞𝑀 , B = {𝑇𝑞𝑀}, and then
OC is an equivalence, such that 𝐿 is in the full subcategory split generated by 𝑇𝑞𝑀 . Therefore
𝑇𝑞𝑀 split generates W (𝑇∗𝑀), from which the claim follows. □

4“proof” since it is not necessarily obvious that OC witnesses this equivalence.
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§5. l Examples and Applications

In this section, we discuss examples related to the above constructions, and perform some
computations. First, from the homotopical side, Theorem 3.8, allows us to construct a Liouville
manifold 𝑀 such that the wrapped Fukaya category of 𝑀 , W (𝑀), is equivalent to modules
over 𝐴 for various E1-𝑅-algebras 𝐴. As a first example:

Example 5.1. Let 𝐴 be the free E1-algebra over 𝑅 on a class in degree 𝑘 > 0. That is,
𝐴 = 𝐶∗(ΩΣ𝑆𝑘) = 𝐶∗(Ω𝑆𝑘+1). Since the sphere 𝑆𝑘+1 is connected, closed, and oriented, we
have that Mod(𝐴) ≃ 𝜋(Tw(W (𝑇∗𝑆𝑘+1))). A standard Serre spectral sequence shows that
𝐶∗(Ω𝑆𝑘+1) ≃ 𝑅[𝑥] is a polyomial algebra on a class 𝑥 with |𝑥 | = 𝑘 .

Let’s try to see that the cotangent fiber over a point has the expected endomorphism algebra
in this wrapped Fukaya category:
This would be very hard to attempt directly with coordinates, even for 𝑇∗𝑆2. Using the stan-
dard Riemannian metric, the Hamiltonian 𝐻 (𝑝, 𝑞) = 𝑔∗(𝑝, 𝑝)2 gives rise to the flow 𝜙𝑡

𝐻
.

In local coordinates (cos(𝜑) sin(𝜃), sin(𝜑) sin(𝜃), cos(𝜃)), the Riemannian metric is given by
sin2(𝜃)𝑑𝜑2 + 𝑑𝜃2. The differential equations 𝜙𝑡

𝐻
= (𝑑𝜑(𝑡), 𝑑𝜃 (𝑡), 𝜑(𝑡), 𝜃 (𝑡)) must satisfy are

therefore (𝑑𝜑 and 𝑑𝜃 the cotangent coordinates):

𝜕𝑡 (𝑑𝜑(𝑡)) = 0; 𝜕𝑡 (𝑑𝜃 (𝑡)) =
cos(𝜃 (𝑡))
sin3(𝜃 (𝑡))

𝜑(𝑡)2; 𝜕𝑡 (𝜑(𝑡)) =
𝑑𝜑(𝑡)

sin2(𝜃 (𝑡))
; 𝜕𝑡 (𝜃 (𝑡)) = 𝑑𝜃 (𝑡).

We need a better way to figure out what this flow should be, and coming to our rescue is the
notion of a cogeodesic flow [Hil21]5. For our Riemannian manifold 𝑀 , the time 𝑡 = 1 flow can
be described by the exponential map together with the isomorphism determined by the metric:
𝑇∗𝑀

∼−→ 𝑇𝑀
𝑒𝑥𝑝
−−−→ 𝑇𝑀

∼−→ 𝑇∗𝑀 , (at least assuming that the exponential exists for enough
time). However, there is a problem. If we are working on the spheres 𝑆𝑛, with both Lagrangians
the cotangent fiber at the same point 𝑞,𝑇∗

𝑞𝑆
𝑛∩𝜙1

𝐻
(𝑇∗
𝑞𝑆
𝑛) is not a transverse intersection. Indeed,

any intersection which is not at the zero section will have connected component a whole 𝑆𝑛−1.
Now, one may say that this is absolutely horrible, horrid, another example of horrible behavior
of our spheres 𝑆𝑛 for 𝑛 ≥ 2. Alas, the fix is rather simple, and this behavior is actually our
saving grace for determining the grading on the Hom complex. To correct the issue, simply
take local coordinates (𝑝1, ..., 𝑝𝑛, 𝑞1, ..., 𝑞𝑛), and then let 𝐻 : 𝑇∗𝑆𝑛 → R, 𝐻 (𝑝, 𝑞) = 𝑝𝑖 . The
associated Hamiltonian vector field to 𝐻 is 𝑋𝐻 = 𝜕𝑞1 , so under the flow of 𝐻, 𝑇∗

𝑞𝑆
𝑛 maps to

𝑇∗
𝑠 𝑆
𝑛 for some close enough point 𝑠 to 𝑞, which we can use as our perturbed version 𝐿′ of

𝐿 = 𝑇∗
𝑞𝑆
𝑛 to construct the Floer complex. Now, the intersection 𝜙1

𝐻
(𝐿) ∩ 𝐿′ is transverse, and

is Z as a set.
This intersection corresponds to Hamiltonian trajectories for 𝐻 from 𝐿 to 𝐿′, which further

corresponds to geodesic flows from 𝑞 to 𝑠. This can be explicitly seen from the above by
noting the intersections are identified with the points 𝑟 in the tangent space with exp𝑞 (𝑟) = 𝑠,
which are precisely the geodesic flows from 𝑞 to 𝑠. It is a classical fact6 that the index of
the intersection point in the sense of Floer theory is negative the Morse index of the geodesic
considered as a critical point of the energy funtional (see [Ye20] for the definitions of this part).
Thus, in our 𝑆𝑛 case, we know from our Riemannian geometry classes that these geodesics lie

5The 𝑆1 example is where it is easiest to see the connection Hamiltonian flow as connected to the exponential
map, and in general describing it in local coordinates using our Riemannian metric, it is not hard to show that the
Hamiltonian flow we are after is the cogeodesic flow.

6c.f. I’m taking this on faith, but it sounds believable.
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on great circles through 𝑞 and 𝑠. Earlier, we said that the fact that the intersections of 𝐿 with
𝜙1
𝐻
(𝐿) being spheres of one dimension lower would be our saving grace, and with the help

of the index theorem, Theorem 7.4 of [Ye20], we can now see why. The index theorem says
that ind(𝑔) = number of conjugate points with multiplicity of 𝑔(𝑡), for our given geodesic 𝑔.
The conjugate points for our geodesic are precisely the points 𝑣 where 𝐷 exp𝑞 (𝑣) (writing exp
instead of 𝑔 here for clarity, opting to use Petersen’s notation) is singular, which are precisely
the points where 𝑔(𝑡) = 𝑞 and 𝑡 > 0, or 𝑔(𝑡) = −𝑞, the point antipodal to 𝑞. The multiplicity of
these points is the dimension of the kernel of 𝐷 exp𝑞 at these points. As we essentially noted
via the “bad behavior,” at these conjugate points, there is a whole 𝑆𝑛−1 worth of points mapping
to it, such that the index is dim(𝑆𝑛−1) = 𝑛 − 1.

With all this in hand, determining the grading is easy. We can simply count the number
of conjugate points. The shortest path from 𝑞 to 𝑠 does not pass any, so it has (Morse, which
we will say for all indices for now, so we are working with - the Floer index) index 0, and
we denote it by 1. There is a geodesic which “flees away from” 𝑠, passing through −𝑞 and
hitting 𝑠, not covering the great circle through 𝑞 and 𝑠. It’s only critical point is −𝑞 of index
𝑛 − 1, so that this curve has index 𝑛 − 1, we denote this generator by 𝑥. Concatonating 𝑚 loops
passing through 𝑠,−𝑞,−𝑠, 𝑞 at 𝑠 to the first path, we get geodesics passing through 𝑞 and −𝑞
𝑚 times, so these have index 2𝑚(𝑛 − 1), and concatonating 𝑚 loops going the other direction
to the second geodesic, we get geodesics with index (2𝑚 + 1) (𝑛 − 1). For 𝑛 > 2 there are no
differentials for degree reasons, and for 𝑛 = 2, one can check that 𝜇1 vanishes on 𝑥, so will
vanish identically by what we are about to prove. To figure out the multiplication on 𝑥, we
perform a trick. Replace the point 𝑠 with a point close to −𝑞 but not −𝑞, and add in a third point
𝑟 (strictly) between −𝑠 and −𝑞 on the same great circle as 𝑞 and 𝑠, close to −𝑠. The geodesic
represented by 𝑥 from 𝑞 to 𝑠 and the geodesic represented by 𝑥 from 𝑠 to 𝑟 can be concatonated
to give a geodesic from 𝑞 to 𝑟 , passing through 𝑞 and −𝑞, which is exactly our class 𝑥2 in
degree 2(𝑛 − 1). While one needs to check a few other triangles in the definition of 𝜇2 cannot
happen to make it formal, this argument (applied repeatedly) at least makes it intuitively clear
why 𝐻∗ Hom(𝑇∗

𝑞𝑆
𝑛, 𝑇∗

𝑞𝑆
𝑛) = Z[𝑥] with |𝑥 | = 𝑛 − 1, from the point of view of Morse theory.
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