
L-FUNCTIONS AND GEOMETRY

LOGAN HYSLOP

Abstract. In this final project, we give an expository account introducing L-
functions from the point of view of number theory and geometry. The goal will
be to motivate and describe how L-functions are attached to objects in algebraic
geometry, how they lead to some major developments in the field, and how they
relate to some open conjectures, in particular building up to the statement of the
Beilenson conjectures. This should be seen as a precursor to next quarter’s final
project, tentatively titled “L-functions and topology,” which will aim to exposit
the connections between special values of L functions and homotopy theory (via
K-theory, trace methods etc.).

Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2. Artin L-Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3. L-Functions in Algebraic Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
4. The Beilenson Conjectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

§1. Introduction

L-functions are an invariant assigned to some object of interest which output some (some-
times conjecturally) meromorphic function on the complex plane C which have proven to be of
incredible importance over the last century in several different field of mathematics. The most
famous L-function is most likely the Riemann-Zeta function 𝜁 (𝑠) = 𝜁Q(𝑠), the analytic contin-
uation of 𝜁 (𝑠) = ∑

𝑛≥1
1
𝑛𝑠

, carrying information about the prime numbers. From the perspective
of Artin L-functions, this is the L-function over the rational numbers Q assigned to the trivial
Galois representation on a one dimensional complex vector space. Similarly, from a geometric
perspective, this is the L-function assigned to the terminal scheme Spec(Z), in the manner
described in §3. Other applications to number theory include (but are by no means limited to)
Dirichlet’s famous theorem on primes in arithmetic progressions, which can be proved using
analytic facts about L-functions as in [Kah20], and in one proof of the modularity theorem
connecting rational elliptic curves to modular forms (more specifically newforms) of weight 2
and level Γ0(𝑁𝐸), where 𝑁𝐸 is the conductor of the elliptic curve 𝐸 (see [DS06] discussion
surrounding Theorem 8.8.3 and the sources contained therein).

In this paper, we will describe, in §2, Artin L-functions, which are L-functions attached to
Galois representations. More precisely, to any number field𝐾 (or global field), one can associate
an L-function 𝜁𝐾 (𝑠) = 𝐿𝐾 (𝑠, 1) which is defined analogously to the Riemann-zeta function
using primes in the ring of integers O𝐾 of 𝐾 . The zeta functions 𝜁𝐾 have values conjecturally
related to the algebraic K-groups 𝐾∗(O𝐾 ), which is a generalization of the so-called analytic
class number formula, relating (the leading term of the power series expansion at 0 of) 𝜁𝐾 (𝑠)
to the group of roots of unity contained in O𝐾 and the class number of O𝐾 . Since the torsion
in 𝐾0(O𝐾 ) = Z ⊕ Cl(O𝐾 ) is the class group, and the torsion in 𝐾1(O𝐾 ) = O×

𝐾
are the roots

of unity in O𝐾 , this connection can be seen as a connection between 𝜁𝐾 and torsion in 𝐾0,
𝐾1, which the general conjecture generalizes, which will (tentatively) be the main focus for
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the final project next quarter. Other connections to homotopy theory include the image of the
so-called 𝑗-homomorphism in the stable homotopy groups of spheres, which Adams proved to
be describable in terms of the Bernoulli numbers. Zhang took the perspective that the spectrum
𝐽 corresponds to the Riemann-zeta function, and has associated “Dirichlet J-spectra” to certain
Dirichlet L-functions [Zha22], though we will not speak more on this. Artin L-functions will
be useful later on when giving a cohomological description of L-functions attached to schemes
(and pure motives1).

The study of L-functions lead to some of the most important developments in mathematics
in the 20th century, in particular in the foundations of modern algebraic geometry. This started
with the Weil conjectures, which pertain to certain L-functions attached to varieties over a
finite field F𝑞. These conjectures provided some of the first applications of Grothendieck’s new
foundations for algebraic geometry, who proved the first three of them, in the process developing
étale cohomology. This new cohomology theory, in some sense a mix of Galois cohomology
and cohomology of analytic spaces, and the ideas that came along with it, were pertinent to the
development of the modern theory of algebraic geometry and in turn many other fields such as
number theory2 or homotopy theory3 As was the motivation for Grothendieck, so too will these
motivate our discussion in §3 where we assign L-functions to arbitrary schemes, and later to
pure motives. In the final section §4, we will aim to state the Beilenson conjectures for motivic
cohomology.
Notation/Conventions

• I will write l before any proof that I did as an exercise, although similar (and oftentimes
probably better) proofs of these surely exist in the literature. These are simply what I
came up with for the project.

• Given a global field 𝐾 , and a prime p in its ring of integers, we will write 𝑘 (p) or
sometimes 𝑘𝐾 (p) for the residue field O𝐾/p. For the most part, when discussing notation
related to algebraic number theory, we will tend to follow [Sha].

• When dealing with a scheme 𝑋 , we will write 𝑋(0) for the set of closed points of 𝑋 . When
𝑅 is a ring, we write mSpec(𝑅) for the maximal spectrum of 𝑅, which is identified as a
set with the maximal ideals in 𝑅.

1Attached to some suitably nice Weil cohomology theory.
2Where étale cohomology is widely used, as well as other 𝑝-adic cohomology theories that came along with it.
3Such as in the chromatic story where algebraic stacks are necessary.

2



§2. Artin L-Functions

We begin with some motivation, the majority of the results in this section are taken from [Sna02].
Let 𝐾 be a number field. In the case of Q, we have Riemann’s zeta function 𝜁Q(𝑠) =

∑
𝑛≥1

1
𝑛𝑠

=∏
𝑝∈P

1
(1−𝑝−𝑠 ) , where P denotes the set of primes. To write this more algebraically, we identify

P with the spectrum of maximal ideals mSpec(Z), i.e., the closed points of Spec(Z). Now the
expression (𝑝)−𝑠 no longer quite makes sense, since (𝑝) means the ideal (𝑝) ∈ mSpec(Z),
however, we can recover the integer 𝑝 from |Z/(𝑝) |. But now we have an expression that makes
sense for any ring of integers O𝐾 ⊆ 𝐾 , so we can define:

Definition 2.1. The Dedekind zeta function associated to a number field 𝐾 is the function
𝜁𝐾 (𝑠) =

∏
p∈mSpec(O𝐾 )

1
(1−𝑁 (p)−𝑠 ) =

∑
𝐼∈I ( 1

𝑁 (𝐼 )𝑠 ), where 𝑁 (𝐼) denotes the order of the
quotient ring O𝐾/𝐼, and I is the set of nonzero ideals in O𝐾 .

These form holomorphic functions on the half-plane {Re(𝑠) > 1}, which can be seen from
comparing with the case 𝐾 = Q: Noting that if 𝑟 = [𝐾 : Q], there are at most 𝑟 primes in
O𝐾 dividing any integral prime 𝑝. So, |𝜁𝐾 (𝑠) | ≤

∏
𝑝∈P

1
| (1−𝑝−𝑠 )𝑟 | = |𝜁Q(𝑠)𝑟 |, and

∑
𝑛≥1

1
𝑛𝑠

converges absolutely for all 𝑠 ≥ 1. One can translate this into the Dirichlet series expressions,
taking the absolute value of every term, and using bounds derived from the above to get absolute
convergence of the series defining 𝜁𝐾 (𝑠) in the region 𝑠 > 0.4

With these in hand, one can ask about if we can “twist” the terms 𝑁 (p)−𝑠 in some way to
get some larger class of L-functions with interesting properties, say, that can translate between
different number fields. There is a natural way to translate invariants between number fields via
examining connections to their Galois representations. So, consider a finite Galois extension
𝐸/𝐾 of number fields, and a complex representation 𝜌 : Gal(𝐸/𝐾) → GL(𝑉) for a finite
dimensional complex vector space 𝑉 .

Proposition 2.2. These are the same as what would usually be called Galois representations,
i.e., continuous homomorphisms 𝜌 : 𝐺𝐾 = Gal(𝐾𝑠𝑒𝑝/𝐾) → GL𝑛 (C).

Proof. l This can be proven using for instance Cartan’s theorem that a closed subgroup of
a Lie group is a Lie group. Thus, the image of the profinite group 𝐺𝐾 under this continuous
homomorphism must be a Lie subgroup, which would give a continuous surjection 𝐺𝐾 → 𝑈

to a compact Lie group 𝑈. We claim that this factors over some Gal(𝐸/𝐾), and to show
this, it suffices to show that 𝑈 is finite. We can restrict to the connected component 𝑉 of the
identity in 𝑈, and its inverse image 𝐻 in 𝐺𝐾 , giving a surjective map 𝐻 → 𝑉 from a profinite
group 𝐻 to a connected compact group 𝑉 . Under Pontrjagin duality, this gives an injection
𝑉∧ → 𝐻∧ of (discrete) groups. Since 𝑉 is connected, any 𝑓 : 𝑉 → 𝑆1 has connected image, so
if nontrivial, so is 𝑛 · 𝑓 for all 𝑛, i.e., 𝑉∧ is torsion-free, whereas 𝐻 = inj lim𝐻𝑖 for finite 𝐻𝑖 , so
𝐻∧ = proj lim𝐻𝑖 is torsion. Since 𝑉∧ injects into 𝐻∧, 𝑉∧ = {𝑖𝑑} is the trivial group, and then
the connected component of the identity in𝑈 is a point, so𝑈 must be finite, as desired.5 □

Remark 2.3. We emphasize that this fact above uses that the target is a Lie group, abusing
the Euclidean topology6, and in particular, the same will not be true of (continuous) ℓ-adic
representations 𝐺𝐾 → GL𝑛 (Qℓ) later on, which will be the correct notion for our definitions.

4Alternatively one can work directly with the Dirichlet series and use bounds arrived at by studying the geometry
of embeddings as in [Sha].

5There should also be an analytic proof of this fact without appealing to Pontrjagin duality by utilizing a similar
proof as in a problem on the first homework to classify compact subgroups of 𝑆1, but this proof is the shortest and
cleanest that I can come up with.

6One can also give the target the discrete topology and the same proposition is true, but even easier to show.
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Before define the Artin L-function associated to a complex Galois representation 𝜌, we have
to introduce some notation. Given a prime p in O𝐾 , we fix a prime 𝓅 in O𝐾𝑠𝑒𝑝 7, define 𝐺𝓅

as the subgroup 𝐺𝓅 ⊆ 𝐺𝐾 of all elements 𝜑 with 𝜑(𝓅) = 𝓅. This subgroup is identified with
the absolute Galois group of the local field at the place p, and has inertia subgroup 𝐼𝓅, arising
as the subgroup of the map 𝐺𝓅 → 𝐺𝑘 (p) , and we have that 𝐺𝓅/𝐼𝓅 ≃ 𝐺O𝐾/p is topologically
generated by the Frobenius element Frobp. Then, Frobp acts on the fixed point subspace 𝑉𝐺𝓅 ,
allowing us to define:

Definition 2.4. If 𝜌 : 𝐺𝐾 → GL(𝑉) is a complex Galois representation, the Artin L-function
𝐿𝐾 (𝑠, 𝜌) is defined by:

𝐿𝐾 (𝑠, 𝜌) =
∏

p∈mSpec(O𝐾 )
(det(1 − 𝑁 (p)−𝑠 Frobp |𝑉𝐺𝓅 )−1).

This is independent of the choice of 𝓅 over p since any two choices are conjugate and the
determinant is invariant under conjugation. We have:

Proposition 2.5 ([Sna02] Proposition 1.1.3). The Artin L-functions have the following proper-
ties8:
(i) 𝐿𝐾 (𝑠, 𝜌) is a holomorphic function on the half-plane Re(𝑠) > 1, and admits a meromorphic
extension to the whole plane.
(ii) We have 𝐿𝐾 (𝑠, 𝜌1 ⊕ 𝜌2) = 𝐿𝐾 (𝑠, 𝜌1)𝐿𝐾 (𝑠, 𝜌2).
(iii) If 𝐹/𝐾 is an arbitrary extension of number fields, and 𝜌 is a Galois representation for 𝐹,
then:

𝐿𝐾 (𝑠, Ind𝐺𝐾
𝐺𝐹

𝜌) = 𝐿𝐹 (𝑠, 𝜌).

Sketch. (i) l We sketch the first half of the claim. The action of 𝐺𝑘 (p) on 𝑉𝐺𝓅 factors over
a finite cyclic group, so the action can be diagonalized, and we can write, up to conjugating
𝜌(Frobp) = 𝑑𝑖𝑎𝑔(𝜁1, . . . , 𝜁dim𝑉𝐺𝓅 ), where the 𝜁𝑖 are roots of unity. In particular, det(1 −
𝑁 (p)−𝑠 Frobp |𝑉𝐺𝓅 ) =

∏(1 − 𝑁 (p)−𝑠𝜁𝑖). Taking the associated Dirichlet series expansion,
taking the absolute value of every term, this gives us a bound on the coefficients in terms
of those of 𝜁𝐾 (𝑠)dim(𝑉 ) , and this allows us to get absolute convergence of 𝐿𝐾 (𝑠, 𝜌) when
Re(𝑠) > 1. For the second half of the claim, the usual proof proceeds by using (ii) and (iii)
together with a result of Brauer to reduce to the case when 𝑉 is 1-dimensional and 𝜌 factors
over a cyclic quotient of 𝐺𝐾 .

(ii) Is clear.
(iii) l For (iii), we take inspiration from Mackey, who proved a decomposition formula

[Con] for Res𝐺
𝐻

Ind𝐺𝐾 𝜌 when 𝐻, 𝐾 are two subgroups of a (finite) group 𝐺 (applied using some
𝐺 = Gal(𝐸/𝑅) which 𝜌 factors over). For concreteness, we restrict to the case when 𝑉 is 1-
dimensional and Gal(𝐸/𝐹) is cyclic of order 𝑛 (the general case, combined with (ii) and Brauer’s
theorem follows from these cases for an alternative method). Mackey’s formula tells us that we
can express ResGal(𝐸/𝐾 )

Gal(𝐸𝓅/𝐾p ) IndGal(𝐸/𝐾 )
Gal(𝐸/𝐹 ) (𝜌) (abusively identifying 𝓅 with its restriction to 𝐸) in

terms of a sum of induced representations IndGal(𝐸𝓅/𝐾p )
𝜎𝑖 Gal(𝐸𝓆𝑖

/𝐹q𝑖 𝜎
−1
𝑖

) (𝑐
𝜎𝜌), one for each prime q𝑖 in

7This prime will be infinitely generated, and this choice amounts to a coherent choice of primes over p for some
cofinal system of Galois extensions of 𝐾 , recovering the same notions used in the definitions of Snaith [Sna02], but
we prefer this definition since it’s more closely connected to what will be done in the next section.

8Snaith’s property (ii) does not apply in our situation since we defined our Artin L-functions directly from
representations of the absolute Galois group, it just says that the definition is independent of the choice of 𝐸/𝐾
which 𝜌 factors over the Galois group of.
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𝐹 lying over p. If the Frobenius of q𝑖 acts as 𝜁 on𝑉 , then the induced representation over q𝑖 , after
taking invariants for the inertia subgroup, has Frobp acting on it as 𝑑𝑖𝑎𝑔(𝜁, 𝜁𝑚𝜁, . . . , 𝜁𝑚−1

𝑚 ),
where [𝑘𝐹 (𝓆𝑖) : 𝑘𝐾 (p)] = 𝑚 (essentially, on these fixed point parts, we are inducing from the
cyclic group Z/𝑟Z up to Z/𝑚Z). Thus, the determinant of 1 − 𝑁 (p)−𝑠 Frobp on this subspace
is

∏𝑚−1
𝑖=0 (1 − 𝑁 (p)−𝑠𝜁 𝜁 𝑖𝑚) = (1 − 𝑁 (p)−𝑚𝑠𝜁). Using that 𝑁 (p)𝑚 = 𝑁 (q𝑖), we get that the

factors in the product in Definition 2.4 defined for the primes lying over p in the exression for
the L-function over 𝐹 multiply out to give exactly the expression for the multiplicative term
attached to the prime p in the L-function for 𝐾 on the induced representation, giving the desired
equality. □

We conclude this section with an advertisement for next quarter. One of the reasons Artin
L-functions, and in particular Dedekind zeta functions, are studied, is for their conjectural
connections to algebraic K-theory. The first result in this direction is the following:

Theorem 2.6. Let 𝐾 be a number field, 𝑟1 the number of distinct real embeddings and 2𝑟2 the
distinct number of complex embeddings. Then, we have:

lim
𝑠→0

𝑠1−𝑟1−𝑟2𝜁𝐾 (𝑠) = − | Tors(𝐾0(O𝐾 )) |𝑅1(𝐾)
| Tors(𝐾1(O𝐾 )) |

,

where the denominator is the order of the group of roots of unity in O𝐾 and the numerator is
the class number times 𝑅1(𝐾), the regulator, which is defined in terms of the covolume of the
image of the logarithm map defined for instance in [Sha].

This gives a connection between these zeta functions and algebraic K-theory, which we
don’t understand that well on rings of integers.9 What we will tentatively describe next quarter
is the proof of the above theorem, together with its extension to the so-called Lichtenbaum
conjecture (taken in this form from [Sna02]):

Conjecture 2.1 (Lichtenbaum). For integers 𝑚 ≥ 2, we have

𝜁𝐾 (1 − 𝑚)∗ = ±2𝑛
|𝐾2𝑚−2(O𝐾 ) |𝑅𝑚(𝐾)
Tors(𝐾2𝑚−1(O𝐾 ))

,

where 𝑛 ≥ 0 is an integer.

We will leave the actual definitions of 𝜁 (1 − 𝑚)∗ and 𝑅𝑚(𝐾) until next time.

9This is hyperbole, while we don’t know the complete computations, and plenty of parts are still conjectural, we
have a pretty good idea of what these look like in many cases. 𝐾 (Z) is only known up to a number theory conjecture,
but we do know what its 𝑝-completion looks like at primes which are not counterexamples to Vandyver’s conjecture,
see Weibel [Wei05] for an exposition.
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§3. L-Functions in Algebraic Geometry

In 1949, André Weil proposed some conjectures related to smooth projective varieties over a
finite field [Wei49]. He defined:

Definition 3.1. Let 𝑋 be a smooth projective variety over the finite field F𝑞. Define the zeta
function of 𝑋 to be:

𝑍 (𝑋, 𝑡) = exp(
∑︁
𝑚≥1

|𝑋 (F𝑞𝑚) |
𝑡𝑚

𝑚
) ∈ Q[[𝑡]] .

This is defined in such a way that the logarithmic derivative of this power series gives the
generating function for the sequence 𝑎𝑚 = |𝑋 (F𝑞𝑚) |. Weil conjectured that if 𝑋 is smooth
projective of dimension 𝑑, then we have, paraphrasing from Milne [Mil13]:

Conjecture 3.1 (Weil [Wei49], (1)-(3) theorems of Grothendieck, (4) theorem of Deligne). (1)
𝑍 (𝑡) is a rational function, which can be written as 𝑍 (𝑡) = 𝑃1 (𝑡 ) ...𝑃2𝑑−1 (𝑡 )

𝑃0 (𝑡 ) ...𝑃2𝑑 (𝑡 ) , where 𝑃0(𝑡) = 1− 𝑠,
𝑃2𝑑 (𝑡) = 1 − 𝑞𝑑𝑡, and for the other 𝑟 , 𝑃𝑟 (𝑡) =

∏𝛽𝑟
𝑖=1(1 − 𝛼𝑟 ,𝑖𝑡).

(2) The 𝛽𝑟 act as we would expect Betti numbers to from complex geometry.
(3) The 𝑍 (𝑠) satisfy a functional equation 𝑍 ( 1

𝑞𝑑𝑡
) = ±𝑞𝑑𝜒/2𝑡𝜒𝑍 (𝑡) with 𝜒 =

∑
𝑟 (−1)𝑟 𝛽𝑟 .

(4) (Riemann hypothesis) The 𝛼𝑟 ,𝑖 are algebraic integers with |𝛼𝑟 ,𝑖 | = 𝑞𝑟/2.

For a sketch of Grothendieck’s proofs of the first 3, we refer to [Mil13]. They key insight
Grothendieck had was that one could define so-called étale cohomology, which, taken with
coefficients in Qℓ 10 for a prime ℓ ∤ 𝑞, satisfies a suitably analogue of the Lefschetz fixed point
theorem from differential topology. Since the fixed points of the Frobenius 𝑥 ↦→ 𝑥𝑞

𝑚 are exactly
the F𝑞𝑚-points of 𝑋 , it should at least be intuitively clear why the above zeta functions should
be connected to actions of Frobenii on étale cohomology.

One may wish to define similar zeta functions for other schemes. A natural situation to
consider is when everything is finite at every prime, so we can get meaningful counts, explicitly:

Definition 3.2. Let 𝑋/Spec(Z) a finite type scheme, and let 𝑋(0) be the set of dimension 0 (i.e.
closed) points of 𝑋 . We define the zeta function of 𝑋 as:

𝜁 (𝑋, 𝑠) =
∏
𝑥∈𝑋(0)

1
1 − |𝑘 (𝑥0) |−𝑠

.

This converges for Re(𝑠) > dim(𝑋), and has an analytic continuation to a meromorphic
function on the whole plane.

Example 3.3. (1) If 𝑋 = Spec(Z), then 𝜁 (𝑋, 𝑠) =
∏
𝑝∈P

1
1−𝑝−𝑠 is Riemann’s zeta function.

Similarly, if 𝑋 = Spec(O𝐾 ) for a number field 𝐾 , then 𝜁 (𝑋, 𝑠) = 𝜁𝐾 (𝑠).
(2) If 𝑋 is a smooth projective scheme over a finite field F𝑞, it can be shown as in [Mil13]
that 𝜁 (𝑋, 𝑠) = 𝑍 (𝑋, 𝑞−𝑠). For a concrete example, take the degenerate case 𝑋 = Spec F𝑞, then
𝑍 (𝑋, 𝑡) = exp

(∑
𝑚≥1

𝑡𝑚

𝑚

)
= exp(− log(1 − 𝑡)) = exp

(
log

(
1

1−𝑡

))
= 1

1−𝑡 , 𝜁 (𝑋, 𝑠) =
1

1−𝑞−𝑠 , and
we can clearly see the desired equality.
(3) l For a slightly less trivial example, let’s consider the projective line P1 over F𝑞. The
closed points correspond to places for the global field F𝑞 (𝑡). Aside from the point at ∞
with residue field F𝑞, these points are identified with prime ideals in F𝑞 [𝑡], in turn identified

10This is meant to carry a topology, so one has to be slightly careful with the definition of ℓ-adic étale cohomology.
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with monic irreducible polynomials 𝑓 (𝑡) over F𝑞, with residue field of order 𝑞deg( 𝑓 ) (since
[F𝑞 [𝑡]/ 𝑓 (𝑡) : F𝑞] = deg( 𝑓 )). Thus, the Euler product expansion is

𝜁 (P1
F𝑞
, 𝑠) = 1

1 − 𝑞−𝑠
∏

𝑓 ∈F𝑞 [𝑡 ] monic irreducible

1
1 − 𝑞−𝑠 deg( 𝑓 ) .

Expanding out this Euler product and using that each nonzero ideal in F𝑞 [𝑡] is determined
uniquely by a monic polynomial, we get

𝜁 (P1
F𝑞
, 𝑠) = 1

1 − 𝑞−𝑠
∑︁

𝑓 ∈F𝑞 [𝑡 ] monic

1
𝑞−𝑠 deg( 𝑓 ) .

As there are 𝑞𝑚 monic polynomials of degree 𝑚 over F𝑞, we can rewrite this as:

𝜁 (P1
F𝑞
, 𝑠) = 1

1 − 𝑞−𝑠
∑︁
𝑚≥1

𝑞𝑚

𝑞−𝑠𝑚
=

1
1 − 𝑞−𝑠

∑︁
𝑚≥1

𝑞𝑚(1−𝑠) .

We have a factor 1
1−𝑞−𝑠 coming from the point at ∞, which is the zeta function associated to a

point, and the other factor is the same as the zeta function associated to the affine line.

This last example demonstrates the following lemma, which follows straight from Definition
3.2:

Lemma 3.4. Let 𝑋/Spec(Z) be a finite type scheme, and𝑈,𝑉 two subschemes of 𝑋 with 𝑋(0) =
𝑈(0)

∐
𝑍 (0) . Then 𝜁 (𝑋, 𝑠) = 𝜁 (𝑈, 𝑠)𝜁 (𝑉, 𝑠). The same holds for any countable decomposition

of 𝑋 .

Example 3.5. l Let’s examine the last computation over Z as well: So, let 𝑋 = A1 =

SpecZ[𝑡]. We have a infinite decomposition 𝑋 =
∐
𝑝∈PA

1
F𝑝

. Rewriting our expression from
Example 3.3 as 𝜁 (A1

F𝑝
, 𝑠) = ∑

𝑚≥1 𝑝
𝑚(1−𝑠) = 1

1−𝑝1−𝑠 , and using this decomposition, we get the
zeta function

𝜁 (𝑋, 𝑠) =
∏
𝑝∈P

𝜁 (A1
F𝑝
, 𝑠) =

∏
𝑝∈P

1
1 − 𝑝1−𝑠 = 𝜁 (SpecZ, 𝑠 − 1).

A similar formula holds for Dedekind zeta functions over other rings of integers.

I figured I would just write up some examples for fun but this last example seems like it
shouldn’t be hard to generalize, and it looks like, up to a degree shift, the A1-invariance that
shows up in motivic homotopy theory (which is a reflection of the cohomological interpretation).

Theorem 3.6 (l, “A1-invariance” of zeta functions for Z-schemes). Let 𝑋 be a finite type
scheme over Z. Comparing 𝜁 functions, we have that 𝜁 (𝑋 ×A1, 𝑠) = 𝜁 (𝑋, 𝑠 − 1).
Proof. l By Lemma 3.4 and induction on dimension, we may assume without loss of gen-
erality that 𝑋 is affine, say 𝑋 = Spec 𝑅. A closed point of 𝑋 × A1 corresponds to a maximal
ideal of 𝑅[𝑡], and since this was assumed finite type over Z, the residue field at this point is
a finite field F𝑞, for some 𝑞. The only subrings of a finite field are finite fields, to the prime
ideal m of 𝑅 that this pulls back to is also maximal, and the correspondence theorem gives us a
correspondence between maximal ideals of 𝑅[𝑡] containing m and maximal ideals of 𝑅/m[𝑡].
That is to say, we have 𝑋 =

∐
m∈mSpec(𝑅) A

1
𝑘 (m) . We then have:

𝜁 (𝑋 ×A1, 𝑠) =
∏
𝑥∈𝑋(0)

𝜁 (A1
𝑘 (𝑥 ) , 𝑠) =

∏
𝑥∈𝑋(0)

𝜁 (𝑘 (𝑥), 𝑠 − 1) = 𝜁 (𝑋, 𝑠 − 1),

from the case of a finite field 𝑘 (𝑥) covered in Example 3.3 (3). □
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Corollary 3.7. If 𝑋 = P𝑛
F𝑞

is 𝑛-dimensional projective space over a finite field, then 𝜁 (𝑋, 𝑠) =∏𝑛
𝑖=0

1
1−𝑞𝑠−𝑖 . If 𝑋 = P𝑛 is 𝑛-dimensional projective space over Z, then 𝜁 (𝑋, 𝑠) = 𝜁 (𝑠) . . . 𝜁 (𝑠 −

𝑛), where 𝜁 (𝑠) is Riemann’s zeta function.

This shows that the requirement Re(𝑠) > dim(𝑋) for convergence is sharp. Theorem 3.6
also allows us to prove this bound:

Proposition 3.8. Let 𝑋 be a finite type Z-scheme. Then 𝜁 (𝑋, 𝑠) converges for Re(𝑠) > dim 𝑋 .

Proof. l First note that Lemma 3.4 allows us to reduce to the case when 𝑋 is connected,
and since we care about the closed points, we may assume without loss of generality that 𝑋 is
reduced. Since 𝑋 is of finite type over Z, it is Noetherian, and thus has finitely many irreducible
components, so another application of Lemma 3.4 allows us to assume that 𝑋 is connected,
reduced, and irreducible, hence integral. By taking an affine open𝑈, which necessarily contains
the generic point (the only dimension 𝑛 point), and using induction on dimension together to
get the result for 𝑋\𝑈, together with 3.4, we may assume that 𝑋 is an affine integral scheme.
We induct on the relative dimension of 𝑋/Z, the case of the relative dimension 0 means either
𝑋 is of dimension zero and 𝑋 = Spec F𝑞 for a finite field F𝑞, in which case the result follows by
3.3 (2), or else 𝑋 is of dimension 1. If 𝑋 is of dimension 1, then its generic fiber is a dimension
zero connected, reduced, scheme over Q, so a finite field extension 𝐾 . Then 𝑋 11 is a localization
of SpecO𝐾 at finitely many primes, and the result follows from the case of the Dedekind zeta
functions discussed in §2 (after cancelling out the terms coming from the finitely many primes
localized out). Now, if 𝑋 has relative dimension 𝑛, if the map 𝑋 → SpecZ has image a single
closed point, then 𝑋 is a scheme over F𝑞 for some 𝑞, and we can find an affine open subscheme
𝑈 of 𝑋 with a finite degree map to A𝑛

F𝑞𝑚
for some 𝑚 ≥ 1, whence by looking at the fibers

over any point and then noting the zeta function for 𝑋 divides 𝜁 (A𝑛
F𝑞
, 𝑠)deg(𝑋→A𝑛

F𝑞
) , the result

follows from the case of A𝑛
F𝑞𝑚

and the result for 𝑋\𝑈 which holds by induction. Otherwise, the
image of 𝑋 → SpecZ is open, in which case, the rationalization of 𝑋 is a scheme over a number
field 𝐾 , and up to localizing at finitely many primes (which we may again do by induction on
dimension), 𝑋 is a scheme over SpecO𝐾 for an 𝑎 ∈ O𝐾 . We can again find an open subscheme
𝑈 of 𝑋 which has a finite degree map onto affine 𝑛-space A𝑛O𝐾 , and then we win from Theorem
3.6 and induction on dimension. More or less what we have just done is look for representatives
of each birational equivalence class that we understand and using induction on dimension. □

If one is doing geometry, we like to work over a field, so one may want to ask how to assign a
zeta function to a proper smooth scheme over Q, or more generally a number field 𝐾 (or a local
field, but more on this later). One option to do this is the Hasse-Weil zeta function. If 𝑋/Spec𝐾
is a smooth projective scheme over a number field 𝐾 , we say that 𝑋 has good reduction at a
finite place p if there is a smooth projective scheme X over Spec((O𝐾 ) (p) ) which restricts to
𝑋 upon taking the generic fiber (pulling back along Spec𝐾 → Spec((O𝐾 ) (p) )), such a scheme
is called a smooth projective model of 𝑋 . In this case, one can define:

Definition 3.9 ([Kah20]). If 𝑋/Spec𝐾 is a smooth projective scheme with good reduction at
a place p, we define the local zeta factor of 𝑋 at p by:

𝐿p(𝑋, 𝑠) = 𝜁 (X𝑠𝑝, 𝑠),

11Or an open subset at least after throwing away some finite set of primes, which can be done since the absolute
dimension 0 case was already handled.
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where X is a smooth projective model of 𝑋 over Spec((O𝐾 ) (p) ), and X𝑠𝑝 is the special fiber
of X , a smooth projective scheme over the finite field O𝐿/p, and the zeta function on the right
is as in Definition 3.2. If 𝑆 is some set of finite places such that 𝑋 has good reduction on all of
the primes not contained in 𝑆, we define the Hasse-Weil zeta function of 𝑋 to be:

𝜁𝑆 (𝑋, 𝑠) =
∏

p∈mSpec(O𝐾 )\𝑆
𝜁p(𝑋, 𝑠).

The local L-factors do not depend on a choice of projective model, as we shall soon se.
Since a scheme 𝑋 as above has good reduction at all but finitely many primes, the Hasse-Weil
zeta function can be defined away from the bad primes, so that we miss only finitely many local
factors. To Serre, this was not entirely satisfactory, he wanted a zeta function that would work
for all smooth projective schemes over a number field. Define the Local L-factor of weight i

𝐿p(𝑋, 𝑖, 𝑠) = det
(
1 − 𝑁 (p)−𝑠𝜋p |𝐻𝑖

�́�𝑡
(𝑋,Qℓ ) 𝐼p

)−1
, where 𝜋p denotes the local Frobenius acting

on the inertia fixed points of 𝐻𝑖
�́�𝑡
(𝑋,Qℓ) via the induced (continuous) Galois action of 𝐺𝐾

on the étale cohomology, for a prime ℓ not dividing 𝑁 (p). We will use the following, which
arises from base change theorems in étale cohomology and Grothendieck’s solution to the Weil
conjectures:

Lemma 3.10 ([Kah20]). If 𝑋 has good reduction at a place p, and ℓ is a prime not dividing
𝑁 (p), we have that 𝐿p(𝑋, 𝑠) is determined by the ℓ-adic étale cohomology. More precisely,
we have 𝑃𝑖 ( �̄�, 𝑁 (p)−𝑠)−1 = 𝐿p(𝑋, 𝑖, 𝑠) where �̄� is the special fiber of a smooth proper model
of 𝑋 over O𝐾 , and 𝑃𝑖 ( �̄�, 𝑡) is the polynomial of the synonymous name from the statement of
the Weil conjectures. In this case, the Galois action of 𝐺𝐾 on the ℓ-adic étale cohomology is
unramified at p.

Recall that the local zeta factor for 𝑋 is
∏2 dim(𝑋)
𝑖=0 𝑃𝑖 ( �̄�, 𝑁 (p)−𝑠)−1. The lemma above

(together with facts about ℓ-adic étale cohomology) simultaneously shows that the local L-
factors for fixed 𝑖, 𝐿p(𝑋, 𝑖, 𝑠) and the 𝑃𝑖 are independent of the choice of smooth projective
model X of 𝑋 and the prime ℓ. This definition of the local L-factor did not use that 𝑋 had
good reduction, and depended only on 𝑋 , which lead Serre to make the conjecture (well, really
several conjectures were made in this paper)

Conjecture 3.2 (Serre, [Ser69]). The local L-factor of weight i does not depend on the choice
of a prime ℓ not dividing 𝑁 (p).

One can define a zeta-function associated to 𝑋 (which is conjecturally dependent on a
choice of ℓ) 𝜁 (𝑋, 𝑠) by fixing a prime ℓ with good reduction, taking 𝑆 to be the set of primes
with bad reduction, and setting 𝜁 (𝑋, 𝑠)ℓ = 𝜁𝑆 (𝑋, 𝑠) ·

∏
p∈𝑆 𝐿p(𝑋, 𝑖, 𝑠)ℓ ,12 where the subscript

makes it explicit we have made a choice of ℓ.13 There are some known cases when this does
not depend on the choice of 𝑖, some explicit ones are when 𝑖 = 0, 1, 𝑖 = 0 this is just the case of
points, since the étale cohomology is just detecting (geometrically) connected components, and
for 𝑖 = 1, this is a theorem of Grothendieck, using that the ℓ-adic cohomology can be described
as a Tate module of the picard scheme (see the discussion in [Kah20] 5.6 for more details).

12One can also define factors for the Archimedean places using Hodge theory to examine the analytification of
our schemes as complex manifolds. As a complete not forced at all remark, hey this connects to the Wirtenger
derivatives we had on the homework since 𝜕 and 𝑝, acting on the complexified cotangent bundle of a complex
manifold, are exactly what gives rise to our Hodge structure!

13Though many authors will not include such a subscript, either by assuming Serre’s conjecture or by keeping ℓ
implicit.
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§4. The Beilenson Conjectures

In this section, we will attempt to state the Beilenson conjectures as discussed in [DS91].
Originally, I had planned to discuss L-functions attached to pure motives in the last section,
but due to time constraints and (moreso) the fact that this project is not supposed to go over 10
pages14, we will [Kah20] for a thorough reference, and just say a few words about them.

The motivation for defining L-functions attached to motives is to unify the case of algebraic
geometry and of Artin L-functions. The definition comes from the local L-factors 𝐿√(𝑋, 𝑖, 𝑠)
defined in the previous section, where one can take a product over all primes to define 𝐿 (𝑋, 𝑖, 𝑠)
(which is conjecturally independent of a choice of ℓ). What one typically does, is instead of
working with Chow motives, one replaces the correspondences coming from Chow cohomology
(cycles up to rational equivalence) in the definition with some other suitably nice equivalence
relation (e.g. associated to a Weil cohomology theory), to define a category of pure motives,
which depends on an equivalence relation ∼. There are some specific subcategories, such as the
category of abelian varieties over 𝐾 up to isogeny, and the category of Artin motives, which
do not depend on ∼. The category of Artin motives is equivalent to the category of continuous
Galois representations with coefficients in a (chosen) base field (which the defined category of
motives depends on), and the associated L-functions are precisely the Artin L-functions from
§2. The local L-factor attached to the motive represented by a smooth projective variety 𝑋 at
a prime of good reduction is just the local L-factor as described before, so this framework is
supposed to unify the L-functions appearing in §2 with those in §3.

In an effort to not go over 10 pages, we will follow [DS91] for stating the Beilenson conjec-
tures, and we will attempt to keep the discussion brief. We will only consider the case of a smooth
projective scheme so we don’t have to worry about defining (what I think would be called) log-
Deligne cohomology. Fix a proper smooth variety 𝑋 over Q. We define 𝐻 𝑝

M(𝑋,Q(𝑞)) to be
motivic cohomology (defined for instance via Bloch’s higher chow groups) with the usual
grading convention. Deninger-Scholl define 𝐻 𝑝

M(𝑋,Q(𝑞))Z to be 𝐻 𝑝

M(𝑋,Q(𝑞)) when 𝑞 > 𝑝,
and Im(𝐻 𝑝

M(X ,Q(𝑞)) → 𝐻
𝑝

M(𝑋,Q(𝑞))) for 𝑞 ≤ 𝑝, for a proper regular model X of 𝑋
over Z15. One can define Deligne cohomology by an explicit chain complex of sheaves on a
complex manifold, and get a short exact sequence 0 → 𝐹𝑞𝐻

𝑝

𝑑𝑅
(𝑋) → 𝐻

𝑝

𝐵
(𝑋,R(𝑞 − 1)) →

𝐻
𝑝+1
D (𝑋,R(𝑞)) → 016, so by the usual fact on how det behaves with respect to short exact

sequences of vector spaces, they define 𝐵𝑝,𝑞 = det𝐻 𝑝

𝐵
(𝑋,Q(𝑞 − 1)) ⊗ 𝐹𝑞𝐻

𝑝

𝑑𝑅
(𝑋)∧ defines

a rational vector space with a canonical injection to det𝐻 𝑝+1
D (𝑋,R(𝑞)). Using a cosimpli-

cial resolution of 𝑋 , A1-invariance, and some resulting spectral sequences, [DS91] construct
the regulator map 𝑟D : 𝐻 𝑝

M(𝑋,Q(𝑞))Z → 𝐻
𝑝

D (𝑋R,R(𝑞)). We end by stating Beilinson’s
conjectures (assuming that L-functions attached to motives work sufficiently nicely):

Conjecture 4.1 (Beilenson [Bei85], [DS91] 3.1). For 𝑞 > 𝑝+1
2 :

(1) 𝑟D is an isomorphism after tensoring the source with R.
(2) 𝑟D (det𝐻 𝑝 (𝑋,Q(𝑞))Z) = 𝐵𝑝−1,𝑞𝐿 (𝑋, 𝑝 − 1, 𝑝 − 𝑞)∗, where 𝐿 (𝑋, 𝑝 − 1, 𝑝 − 𝑞)∗ means the
leading coefficient of the power series expansion of this L-function at p-q.

14It may be over by a little bit due to the bibliography.
15From consulting the literature does not seem to be known that one always exists in general, and some sources

seem to define this using a proper flat model, but then conjecture that it’s independent of a choice of proper flat
model.

16B is for Betti cohomology, and the filtration is the Hodge filtration, which can be defined for schemes over any
base ring.
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