
ON GENERALIZED FOURIER SERIES

LOGAN HYSLOP

1. Introduction

In this note, we aim to answer the following (initially vague) question:

Question 1.1. If we have a complex Banach space B with a nice enough action of the circle S1,

can we define some notion of Fourier series in B such that every vector v ∈ B can be given a

Fourier expansion.

Let’s start by figuring out a precise form of the question to ask such that it has a chance of

being true. First, as topologies are involved everywhere, it seems natural to ask that the action

of the circle be continuous. Furthermore, since we are working with a Banach space B, we have

a norm ∥•∥B on it, and our group action should preserve this norm- that is, the group should

act through isometries. Since we will repeatedly use these kinds of spaces throughout, let’s give

them a name:

Definition 1. A complex Banach space B equipped with a continuous action of the circle through

isometries will be termed an S1-Banach space.

These turn out to be all the conditions we have to impose, but now we have to ask about the

Fourier coefficients themselves- what is a Fourier coefficient? Classically, we may be dealing with

some function space, such as the space ℓ2(S1,C) of ℓ2 complex-valued functions on the circle,

or the space of continuous functions on the circle C(S1,C) with the supremum norm. In each

of these cases, the Fourier coefficients are scalar multiples of functions of the form eix 7→ einx

for eix ∈ S1 and some n ∈ Z. The distinguishing property of these functions is that given an

element eiz ∈ S1, eiz acts on eix 7→ einx by taking it to eix 7→ ein(x+z) = einz · einx. That is, if

eiz{f} denotes the action of eiz, then the space of all f such that eiz{f} = einz · f for all eiz ∈ S1

identifies with the “space of nth Fourier coefficients” for these circle actions. This motivates the

following definition:

Definition 2. If B is an S1-Banach space, the space of nth Fourier coefficients B[n] of B is the

subspace of vectors v such that for all eiz ∈ S1, eiz{v} = einz · v.

Definition 3. There are projection maps pn : B → B[n] defined as the limit

pn(v) = lim
m→∞

1

m!

m!∑
k=1

e−2πikn/m! · (e2πik/m!{v}).

Once we know they are well-defined, the limit in the definition makes it clear that the projection

maps are functorial for S1-equivariant continuous maps of Banach spaces.
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Lemma 1. The projection maps pn are well-defined.

Proof. First we check that the limit converges. Using that the circle action is through isometries,

together with the triangle inequality, we find that

∥ 1

M !

M !∑
k=1

e−2πikn/M ! · (e2πik/M !{v})− 1

m!

m!∑
k=1

e−2πikn/m! · (e2πik/m!{v})∥B ≤ (1.1)

∥m!

M !

M !/m!∑
k=1

e−2πikn/M ! · (e2πik/M !{v})− v∥B ≤ ∥m!

M !

M !/m!∑
k=1

(e−2πikn/M ! · (e2πik/M !{v})− v)∥B. (1.2)

Since the circle action is continuous, given any ε > 0, there is some m ≫ 0 such that

∥e2πiz{v} − v∥B < ε/2 for |z| < 1

m!
,

and

|e−2πiz − 1| < ε/2 for |z| < 1

m!
,

so that we can (using that the circle action is through isometries) bound (1.1) by ε · ∥v∥B to see

convergence.

Next, note that for any q ∈ Q, e2πiq{pn(v)} = e2πinq · pn(v), since this equality actually holds

with 1
M !

∑M !
i=1 e

−2πikn/M ! · (e2πik/M !{v}) replacing pn(v) for all M ≫ 0 (how big M has to be

depends on q). Since the action of the circle is continuous and e2πiq is dense in S1 for q ∈ Q, we

must have eiz{pn(v)} = einz · pn(v) for all eiz ∈ S1. □

The keen reader will note that the way we have defined the projection maps is essentially

through Riemann sums, so that the projection pn could be appropriately be rewritten

pn(v) =

∫
S1

e−inz · v(eiz)dz,

where we are considering v as a function from the circle via v(eiz) := eiz{v}. This formula closely

resembles more classical definitions of Fourier coefficients, as we might hope. With our formulas

in mind, we may now try to make question 1.1 more precise. A naive first guess is:

Question 1.2. Let B be an S1-Banach space. Then for any v ∈ B, is v =
∑

n∈Z pn(v)?

Already with the space of continuous functions C(S1,C) we run into problems with the above

formulation. Namely: there’s no reason for the Fourier series as written to converge! Instead one

typically works with Fejér sums to get an appropriate notion of a ”sequence of Fourier series”

converging to a given continuous function f .

Instead of asking that the Fourier series converge in a specific way, we can just ask that there

is some notion of Fourier series which converges to any given vector, be it through something

similar to Fejér sums, or even something more complicated. We now formulate the main question

that this note aims to answer:

Question 1.3 (Generalized Fourier Series). Consider an S1-Banach space B. Is the subspace⊕
n∈ZB[n] of Fourier polynomials in B dense in the space B itself?
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Next section, we will find that the answer to this question is affirmative. The techniques used

to arrive at this conclusion were inspired by Clausen-Scholze’s lectures on analytic geometry.

Acknowledgments. I want to thank Michael Hitrik for entertaining my extremely algebra-

oriented questions during his functional analysis class taught last winter, and encouraging me to

think more about my needless generalizations of some of the homework questions, such as the

topic of the present note. I learned a lot during the class and had a lot of fun exploring both the

techniques of the class as well as questions which arose from my own curiosity.

https://www.math.uni-bonn.de/people/scholze/Analytic.pdf
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2. The Theorem

We begin with some preliminaries leading into our answer to Question 1.3.

Lemma 2. If B is an S1-Banach space, then there exists some set X, and an S1-equivariant

(isometric) embedding B → C(S1×βX,C) into the space of continuous complex-valued functions

on the product of the circle with the Stone-Čech compactification βX of X.

Proof. Using the duality between Banach spaces and Smith spaces, our S1-Banach space B dual-

izes to a Smith space M with a continuous circle action. Taking an appropriate compact subset

of M as the set X (typically one will take for X the dual of the closed unit ball of B), there is

a surjective map βX → X determined by the universal property of the Stone-Čech compactifi-

cation. This gives rise to a cover M(βX,C) → M of M by the space of complex-valued Radon

measures on βX. While no equivariance was enforced yet, we can replace βX by S1×βX, to get

an S1-equivariant map S1×βX → M , extending to an S1-equivariant map M(S1×βX,C) → M ,

which dualizes to the desired isometric embedding (the dualized map is isometric by the choice

of X as the dual of the closed unit ball). □

This allows us to compare an arbitrary Banach space B to a somewhat more familiar space, in

turn allowing us to prove:

Proposition 1. Suppose that B is an S1-Banach space such that B[n] = 0 for all n ∈ Z. Then

B = 0 is itself identically zero.

Proof. Using Lemma 2, we find that, given an S1-Banach space B, there is an isometric embedding

i : B → C(S1 × βX,C) for some set X. By functoriality of the projection maps pn, it suffices to

show that for any set X, and any f ∈ C(S1 × βX,C), pn(f) = 0 for all n implies that f itself

is zero. Note that C(S1 × βX,C) = C(βX,C(S1,C)), so that any function in this space can be

uniquely described as an X-indexed sequence (fx : S1 → C)x∈X of complex-valued continuous

functions on S1.1 The projection map pn takes f = (fx)x∈X to pn(f) = (pn(fx))x∈X . The claim

now follows from the known fact that a nonvanishing continuous function on the circle has at

least one nonzero Fourier coefficient (due to density of Fourier coefficients in C∞(S1,C) following
from Fejér’s Theorem, see this note, for example). □

Now we get to the main theorem of this note:

Theorem 1. The answer to question 1.3 is positive. That is, if B is an S1-Banach space, then

the space
⊕

n B[n] of generalized Fourier polynomials in B is a dense subspace.

Proof. Take B to be any S1-Banach space. Let V denote the closure of the subspace
⊕

n B[n] in

B, which itself inherits an action of the circle. As V is a closed sub-Banach space of B, we can

take the quotient B/V , which is again a Banach space, inheriting a canonical continuous circle

action through isometries. Let’s write out the short exact sequence in order to give names to all

the maps considered:

0 V B B/V 0.
j q

1Subject to the extra condition that the closure of the set {fx}x∈X in C(S1,C) is compact.

http://susanka.org/MMforQR/Fejer.pdf
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We claim that (B/V )[n] = 0 for all n ∈ Z. Indeed, if there exists some 0 ̸= v ∈ (B/V )[n], this

lifts to a nonzero vector v′ ∈ B. While v′ may not live in B[n], pn(v
′) ∈ B[n], and by functoriality

of the projection maps, q(pn(v
′)) = pn(q(v

′)) = pn(v) = v, as v ∈ (B/V )[n]. But q(B[n]) = 0, so

v = 0 after all. It follows from Proposition 1 that B/V = 0, and we win. □
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