
TOWARDS THE NERVES OF STEEL CONJECTURE

LOGAN HYSLOP

Abstract. Given a local ⊗-triangulated category, and a fiber sequence y
g−→

1
f−→ x, one may ask if there is always a nonzero object z such that either

z ⊗ f or z ⊗ g is ⊗-nilpotent. The claim that this property holds for all local
⊗-triangulated categories is equivalent to Balmer’s “nerves of steel conjecture”
[Bal, Remark 5.15]. In the present paper, we will see how this property can fail
if the category we start with is not rigid, discuss a large class of categories where
the property holds, and ultimately prove that the nerves of steel conjecture is
equivalent to a stronger form of this property.

1. Introduction

In [Bal, Remark 5.15], Balmer had nerves of steel so as not to conjecture that
the comparison map between the homological spectrum and the Balmer spectrum
of a ⊗-triangulated category (tt-category) T is always an isomorphism. Despite
his best efforts, this conjecture has come to be known as Balmer’s “nerves of steel
conjecture.” The problem we study takes a slightly different form, but is in much
the same spirit. To begin, let us make the following definition.

Definition 1.1. We say that the exact-nilpotence condition holds for a local tt-
category T if whenever we have a fiber sequence

y
g−→ 1

f−→ x,

there exists a nonzero object z ∈ T such that either z ⊗ g or z ⊗ f is ⊗-nilpotent.

The connection between this property and the nerves of steel conjecture follows
from further work of Balmer summarized in the following theorem.

Theorem 1.2 ([Bal20]). The nerves of steel conjecture holds if and only if the
exact-nilpotence condition holds for every local tt-category T .

Proof. It follows from [Bal20, Theorem A.1] that the nerves of steel conjecture is
equivalent to the statement that in any local tt-category T , given any morphisms
f, g with f ⊗g ≃ 0, there is some nonzero object z with z ⊗f or z ⊗g is ⊗-nilpotent.
If we have a fiber sequence with f and g as in Definition 1.1, then f ⊗g ≃ 0, proving
one direction. Conversely, assume the exact-nilpotence condition always holds, and
take any g, f ∈ T with f ⊗ g ≃ 0. We may assume without loss of generality
that g : 1 → y and f : 1 → x. Then, (f ⊗ idy) ◦ g ≃ 0, so that g factors over
fib(f) ⊗ y → y, and the exact-nilpotence condition applied to the fiber sequence
fib(f) → 1 → x proves the claim. □
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In §2, we will show that if one drops the requirement that T be rigid, the exact-
nilpotence condition can fail. This is proved by looking at free constructions. In
particular, we prove,
Theorem 1.3. If T is the subcategory of compact objects in the free stably sym-
metric monoidal stable ∞-category on an object with a map from the unit over any
local tt-category, then T is a local category for which the exact-nilpotence condition
is false.

On the positive side, we prove in §3 that the exact-nilpotence condition holds
for a large class of local tt-categories which are generated by their unit. The class
of such tt-categories is closed under filtered colimits with local transition maps. We
will discuss many categories where the condition is known to hold, and add onto
this by showing, for instance:
Proposition 1.4. If R is a connective E∞-ring such that π∗(R) is a local ring,
then C = Modperf

R is a local tt category. If π∗(R) is a Noetherian ring, then the
exact-nilpotence condition holds for C.

This extends to showing that the exact-nilpotence condition holds for the cate-
gory Modperf

R over any connective rational E∞-ring R with π0(R) a local ring, the
proof of which takes the majority of the section.

In the final section, we slightly strengthen Theorem 1.2, to the following claim
Theorem 1.5. The following are equivalent,
• The nerves of steel conjecture holds.
• For every local tt-category T , the exact-nilpotence condition holds.
• There exists an integer n such that for every local tt-category T , and any fiber
sequence as in Definition 1.1, there exists a nonzero object z ∈ T such that either
z ⊗ g⊗n ≃ 0 or z ⊗ f⊗n ≃ 0.
1.A. Conventions. For the purposes of this paper, we will often use ∞-categorical
language, following Lurie [Lur08][Lur17]. We list off some definitions that will be
used throughout the paper.
Definition 1.6. We say that a symmetric monoidal stable ∞-category C is local if
it is nonzero, and given x, y ∈ C with x ⊗ y ≃ 0, then either x ≃ 0 or y ≃ 0.
Definition 1.7. The term tt-category will refer to an idempotent complete rigid
symmetric monoidal stable ∞-category, with a local tt category being a tt-category
which is also local.
Definition 1.8. A symmetric monoidal stable functor F : C → D between local
tt-categories will itself be called local if given c ∈ C, F (c) ≃ 0 iff c ≃ 0.

When working with E∞-rings over a characteristic zero field k, we will denote by
Λk[var2j+1] the free E∞-k-algebra on a class in degree 2j + 1, where var will be a
variable name. We similarly denote by k[var2n] the free E∞-k-algebra on a class in
degree 2j. If R is an arbitrary E∞-k-algebra with a class y2n ∈ π2n(R), we denote by
R/y2n the ring R⊗k[y2n] k, which identifies with the cofiber cofib(y2n : Σ2nR → R).

Definition 1.9. When working with an E∞-ring R, we write Modperf
R for the

category of compact objects in the category ModR of R-module spectra. We often
will abbreviate and write Spc(R) for the Balmer spectrum Spc(Modperf

R ) of this
category.
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2. The Non-Rigid Case

We begin this section with a review of universal constructions to motivate what
is to come. In the following, when working in the category Fin∗ of finite pointed
sets, we write ⟨n⟩ for the pointed set {∗}

∐
{1, . . . , n}, pointed at ∗.

2.A. Universal constructions. Given a symmetric monoidal ∞-category C, pointed
objects 1 → x in C may be viewed as algebra objects over the ∞-operad Poi⊗ ≃ E0.
This operad is defined as the subcategory of finite pointed sets Fin∗ containing all
objects, and morphisms are maps f : ∗

∐
S → ∗

∐
T such that |f−1(t)| ≤ 1 for all

t ∈ T [Lur17, Example 2.1.1.19]. As in [Lur17, Construction 2.2.4.1], we can form
the monoidal envelope

Env(E0) := E0 ×Fun({0},Fin∗) Act(Fin∗)/⟨1⟩,

where Act(Fin∗)/⟨1⟩ is the category of active morphisms in Fin∗ with target {∗}
∐

{1}.1
There is a unique active morphism from any object to ⟨1⟩, which provides us with
an identification of Env(E0) with the category Fininj of finite sets and injective
maps between them. Summarizing, we have:

Lemma 2.1. The free symmetric monoidal ∞-category on a pointed object is given
by the category Fininj of finite sets with injective maps.

□
Now, to arrive at the free situation in tt geometry, we proceed as follows.

Let T be an idempotent complete symmetric monoidal stable ∞-category. By
[Lur17, Lemma 5.3.2.11], there is an equivalence between the category of such cat-
egories (with symmetric monoidal exact functors between them) and the category
of compactly generated presentably symmetric monoidal stable ∞-categories. This
equivalence leads us to study the following:

Lemma 2.2 ([Lur17]). The free presentably symmetric monoidal stable ∞-category
over Ind(T ) on a pointed object is the category Fun((Fininj)op, Ind(T )) of Ind(T )-
valued presheaves on finite sets with injective maps. This category is equipped with
the Day convolution product.

Proof. Given a presentably symmetric monoidal stable ∞-category C, a map Ind(T ) →
C, and a pointed object classified by a symmetric monoidal functor x : Fininj → C,
left Kan extension of x along the Yoneda embedding Fininj → Fun((Fininj)op, Ind(T ))
the map displaying the desired universal property. □

For the purposes of this paper, we work with small categories, so what we care
about is the companion statement:

Corollary 2.3. The free idempotent complete symmetric monoidal stable ∞-category
over such a category T is the category

Fun((Fininj)op, Ind(T ))ω

of compact objects in Fun((Fininj)op, Ind(T )).

□
It will be convenient to introduce the following notation.

1Recall that a morphism f is active if f−1(∗) = ∗.
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Notation 2.1. Given a small symmetric monoidal ∞-category C, denote the cate-
gory Fun((Fininj)op, Ind(C))ω considered above by C[Poi]. Additionally, we denote
by C[X] the category Fun((Fin≃)op, Ind(C))ω of compact objects in Ind(C)-valued
presheaves on the category of finite sets and bijective maps.

Remark 2.4. The second category appearing above, C[X], can be shown to be
the free idempotent complete symmetric monoidal stable ∞-category over C on an
object. This serves as a sort of “non-rigid” tt-affine line, which the notation was
chosen to reflect.

2.B. The Counterexample. We come to the main theorem of this section.

Theorem 2.5. Let C be a local idempotent complete symmetric monoidal stable
∞-category. Then the category C[Poi] described in the previous section is a lo-
cal symmetric monoidal stable ∞-category for which the exact-nilpotence condition
fails.

Before proving this theorem, we must first embark on a journey to study the
“affine line” C[X] over C.

Proposition 2.6. If C is a local idempotent complete symmetric monoidal stable
∞-category, then so too is C[X].

Proof. Note that the category C[X] decomposes as a sum

C[X] ≃
∐
n≥0

Fun(BΣn, Ind(C))ω,

such that every object f ∈ C[X] factors as a finite direct sum f ≃ ⊕n≥0fn, where
fn : (Fin≃)op → C are presheaves with the property that fn(S) = 0 if |S| ≠ n. To
show that C[X] is local, it suffices to show that any two nonzero objects of the form
f = fn : BΣn → C and g = gm : BΣm → C have nonzero tensor product. Given
two such nonzero objects f and g, the object

f ⊗ g : BΣn × BΣm → C × C ⊗−→ C
is nonzero, since C is local. The tensor product f ⊗C[X] g, given by Day convolution,
is described through inducing this representation IndBΣm+n

BΣn×BΣm
(f ⊗ g).

Thus, our claim reduces to showing that the functor
IndBΣm+n

BΣn×BΣm
: CBΣn×BΣm → CBΣn+m

is faithful on objects. This follows from the description
IndBΣm+n

BΣn×BΣm
(−) ≃ 1[Σn+m] ⊗1[Σn×Σm] −,

and the fact that 1[Σn+m] is a direct sum of copies of 1[Σn × Σm]. □

Remark 2.7. For general C, not every Σn-equivariant object of C is compact as an
object of Fun(BΣn, Ind(C)), the former category being possibly larger. However,
the above proof still goes through if we work with the larger category

∐
n≥0 CBΣn ,

which could be used equally well in place of C[X] for what follows.

Proof of Theorem 2.5. First, note that the inclusion Fin≃ → Fininj gives rise to a
functor Res : C[Poi] → C[X]. It is easy to see that this functor exists at the level
of presentable categories. In order to see that it actually takes compact objects
to compact objects, select a choice of compact generators {ci}i∈I for C. Then,
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the collection {H([n]) ⊗C ci}i∈I,n∈N for naturals n (where [n] is the n-element set
{1, ..., n}, andH : Fininj → C[Poi] is the Yoneda embedding) forms a collection of
compact generators for the category C[Poi]. In particular, C[Poi] identifies with the
thick stable closure of this collection in the category Fun((Fininj)op, Ind C), so to
see that any object of C[Poi] lands in C[X], it suffices to test on these test objects,
where it can be seen directly.

A priori, Res need not be symmetric monoidal. However, in our case, it actually
is. Since this functor arises as the right adjoint of a symmetric monoidal functor
(which classifies the free object of C[Poi]), Res is lax symmetric monoidal, so our
goal is to show that this lax structure can be promoted to a genuine symmetric
monoidal structure. Consider the full subcategory T of C[Poi] × C[Poi] consisting
of all pairs (f, g) for which the natural map Res(f) ⊗ Res(g) → Res(f ⊗ g) is an
equivalence. The category T is a thick stable subcategory of C[Poi], so we can use
our test objects {H([n]) ⊗C ci} from before. Note that Res(H([0])) ≃H([0]), such
that Res takes the unit to the unit. Using thatH([1]) generates the Yoneda image
under tensor powers, we can reduce to checking that tensor powers ofH([1]) map to
tensor powers of Res(H([1])). The object Res(H[1]) is given asH[0]⊕H[1] ∈ C[X].
Thus,

Res(1)⊗m ≃ ⊕n≥0H([n])⊕(m
n),

whereas,

Res((H([1]))⊗m) ≃ Res(H([m])) ≃ ⊕n≥0 Fininj([n], [m]) ≃ ⊕n≥0H([n])⊕(m
n),

and the map provided by the lax symmetric monoidal structure is an equivalence.
Now, since Res is faithful on objects, we find that C[Poi] is local by Proposi-

tion 2.6. Note that Res(H([0]) →H([1])) is split, so the free map cannot become
⊗-nilpotent after tensoring with a nonzero object of C[Poi]. Now, note that there
is a canonical equivalence Cop[Poi] ≃ C[Poi]op taking the free map in Cop[Poi] to
the fiber of the free map 1 →H([1]) in C[Poi]. In particular, the above proof run
for Cop in place of C shows that there cannot be any nonzero object in C such that
fib(1 →H[1]) becomes ⊗-nilpotent after tensoring with this object. Thus, the
exact-nilpotence condition fails for C[Poi], as claimed. □

Remark 2.8. It is tempting to attempt to perform a similar proof in the rigid
setup. The first obstruction to this idea is the fact that the free tt-category on a
pointed object over a given tt-category C is inherently rather complicated. Instead
of a presheaf category on finite sets and injective maps, one has a presheaf category
on a variant of the category of oriented 1-dimensional cobordisms where one allows
half-open intervals. Further complicating matters, this category is not going to be
local, and its spectrum is rather complicated, similar to the spectrum of the rigid tt
affine line, which will be studied in forthcoming work of cite Tobias, Greg, Tomer,
Ko and Anish. Nevertheless, if we understood all of the local categories in the free
case over the category of spectra, this would lead either to a proof of the nerves of
steel conjecture or a counterexample.
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3. Some Positive Results

Although the exact-nilpotence condition does fail without rigidity, it may yet
be the case that it always holds when working in a tt-category. The goal of this
section is to prove several cases where the condition does hold. To begin, we will
show the claim under some “Noetherian” type hypotheses.
Proposition 3.1. If R is a connective E∞-ring such that π0(R) is a local ring,
then C = Modperf

R is a local tt category. If π∗(R) is a Noetherian ring, then the
exact-nilpotence condition holds for C.
Proof. Since R is a connective E∞-ring, [Lur17, Proposition 7.1.3.15] shows that
π0(R) = τ≤0R is canonically an E∞-R-algebra. Writing k for the residue field of
π0(R), this supplies us with a symmetric monoidal functor − ⊗R k : Modperf

R →
Db(k). Since the target is local, in order to see that Modperf

R is local, it suffices to
show that if M ⊗R k ≃ 0, then M ≃ 0. Since M ⊗R π0(R) is a perfect R-module,
M ⊗R k ≃ 0 is equivalent to M ⊗R π0(R) ≃ 0. From the fiber sequence

τ≥1R → R → π0(R),
we obtain a fiber sequence, for any R-module M ,

M ⊗R τ≥1R → M → M ⊗R π0(R).
Now, if M is a perfect R-module, there is some maximal i ∈ Z ∪ {+∞} such
that πj(M) = 0 for all j < i, with i = ∞ if M ≃ 0. If M is nonzero, then
πi(M ⊗R τ≥1R) = 0, so that M ⊗R τ≥1R → M cannot be an equivalence, and
M ⊗R π0(R) is nonzero as well, from which the claim follows.

Now, assume that π∗(R) is Noetherian, write m for the maximal ideal in π∗(R).
We can take a presentation m = (a1, ..., an) for some a finite set of generators ai.
Define the perfect R-module

z :=
n⊗

R,i=1
cofib(Σ|ai|R

ai−→ R).

Although ai may not act as zero on π∗(z), we at least know that a2
i acts as zero

on the homotopy groups of z. We learn that π∗(z) is a finitely generated graded
module over the graded ring π∗(R)/(a2

1, ..., a2
n). In particular, z only has finitely

many nonzero homotopy groups, and πi(z) has a finite filtration whose associated
graded pieces are all k-vector spaces, for all i.

Now, consider a fiber sequence

y
g−→ 1

f−→ x

between perfect R-modules. Since k is a field, up to replacing this sequence by its
dual, we may assume that f ⊗R k is split or equivalently that g ⊗R k ≃ 0. We
claim that z ⊗R g is ⊗-nilpotent. Since z has only finitely many nonzero homotopy
groups, the Whitehead filtration on z is a finite filtration, so it suffices to show
that πi(z) ⊗R g is ⊗-nilpotent for each i. Using that πi(z) has a finite filtration
with associated graded pieces given by k-vector spaces, we deduce that πi(z) ⊗R g
is ⊗-nilpotent, since k ⊗R g ≃ 0. □

Corollary 3.2. If f : R → S is a map of connective E∞ rings inducing a local
ring homomorphism of local rings on π0, then f∗ : Modperf

R → Modperf
S is a local

functor of local tt-categories.
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Proof. Given any nonzero perfect R-module M ∈ Modperf
R , then

M ⊗R S ⊗S π0(S) ≃ M ⊗R π0(R) ⊗π0(R) π0(S).
Since M ⊗R π0(R) is nonzero, the claim reduces to the case when R = π0(R) and
S = π0(S) are classical local rings. Any local map R → S of classical local rings
induces a commutative diagram

R S

k(R) k(S)

where k(R) (resp. k(S)) is the residue field of R (S). If M is any nonzero perfect
R-module, then M ⊗R k(R) remains nonzero, and thus

M ⊗R S ⊗S k(S) ≃ M ⊗R k(R) ⊗k(R) k(S) ̸≃ 0.

□

Remark 3.3. In the above proof, when π∗(R) is Noetherian, we constructed an
object such that the exact-nilpotence condition for any fiber sequence always holds
with this taking the role of z in the statement of the condition. This can only
happen when the closed point is the support locus of a single object.

In [Mat16], Mathew computes the Balmer spectrum of the category of modules
over rational E∞-rings with Noetherian π∗, and shows that the nerves of steel con-
jecture holds for such categories. It is tempting to try to use Proposition 3.1 to
prove that the exact-nilpotence condition holds for modules over any finitely pre-
sented local rational E∞-ring. Unfortunately, we run into the same issue considered
by Mathew
Example 3.4. ([Mat16, Proposition 8.8]) The E∞-ring RΓ(A2

Q\{0}) is finitely pre-
sented, but not Noetherian.

One may hope the connective case is better. The situation is not so serendip-
itous, and in fact, non-Noetherian compact E∞-Q-algebras are quite plentiful, as
the following example shows.
Example 3.5. Start with the free E∞-ring Q[x2]⊗ΛQ[y1] on generators y1 in degree
1 and x2 in degree 2. Let R denote the E∞ quotient by x2y1, that is,

Q ⊗ΛQ[z3] (Q[x2] ⊗ ΛQ[y1]),
where z3 maps to x2y1. Considering Q[x2]⊗ΛQ[y1] as a ΛQ[z3]-module, the generator
y1 generates a ΣQ-summand, and when we take the tensor product, we will get
generators in π4n+1 which multiply with x, y and each other to zero. In particular,
π∗(R) is far from Noetherian.

In line with Balmer’s vision that there should be a good notion of “Noetherian”
in tt-geometry, one may expect that any finitely presented E∞-Q-algebra is “Noe-
therian,” whatever this should mean. One expected property is that the Balmer
spectrum of a Noetherian tt-category should be a Noetherian topological space. We
only prove this in the main case of interest, though remark that a careful exami-
nation of the proof will show how to adapt the following to prove such a claim in
the connective case. Before we begin, let’s recall the notion of a collection of ring
maps detecting nilpotence, the form we take is from [Mat16, Definition 4.3]
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Definition 3.6. Given an E∞-ring R, and a collection {R → Si}i∈I of E∞-ring
maps, we say that this collection detects nilpotence (over R) if given any associative
algebra object T in Ho(ModR), then for any x ∈ π∗(T ), x is nilpotent if and only if
the image of x under π∗(T ) → π∗(Si⊗RT ) is nilpotent in π∗(Si⊗RT ) for every i ∈ I.

For a detailed account about detecting nilpotence, we refer to loccite. We state
the main properties that will be useful to us in the following.
Proposition 3.7. Let R be an E∞-ring, and {R → Si}i∈I a collection of E∞-ring
maps which detects nilpotence. The following hold:
• If f : R → A is an E∞-ring map, then {A → A ⊗R Si}i∈I detects nilpotence
over A.
• If h : x → y is a morphism in Modperf

R , then h is ⊗-nilpotent if and only if
h ⊗R Si is ⊗-nilpotent in Modperf

Si
for every i ∈ I.

• The induced map on Balmer spectra
∐

i∈I Spc(Si) → Spc(R) is surjective.2
• If {Si → Tij}j∈Ji

detects nilpotence over each Si, then {R → Tij}i∈I,j∈Ji
detects

nilpotence over R.
• If k is a field of characteristic zero, and n ∈ Z, the collections {Λk[z2n+1] → k}
and {k[z2n] → k, k[z2n] → k[z±1

2n ]} detect nilpotence over Λk[z2n+1] and k[z2n],
respectively.
• Given an E∞-ring map A → B, if the thick ⊗-ideal of ModA generated by B is
all of ModA, then {A → B} detects nilpotence over A.
Proof. For the first condition, if T is any A-algebra, it is also an R-algebra, and
there is an equivalence T ⊗R Sj ≃ T ⊗A (A ⊗R Sj), from which the result follows.
The second, fourth, fifth, and sixth bulletpoints are Proposition 4.4, Proposition
4.6, Example 4.7 and Example 4.8 of [Mat16], respectively. The third claim follows
from [Bar+23, Theorem 1.3]. □

With these preliminaries in hand, we come to the main theorem of the section.
Theorem 3.8. Let R be a finitely presented connective E∞-Q-algebra with π0(R) =
k a field. Then there exists a finite collection {S1, . . . , Sn} of E∞-R-algebras under
R such that the collection {S1, . . . , Sn, k} detects nilpotence for R, where each Si

has a unit in π2(Si), π1(Si) = 0, and π0(Si) is a k-smooth integral domain.
Proof. Let R be a rational connective E∞-algebra, with π0(R) a field k. Mathew
proves that R is a k-algebra, and since π0 commutes with colimits of connective
E∞-rings, k is a finite extension of Q, so is finitely presented.

Our goal is to build the collection {S1, . . . Sn} by induction on the number of
cells in R if R has finitely many cells. The general claim will then follow since
any finitely presented R is a retract of some algebra with finitely many cells. To
explicitly build this, use that πi(R) is a finite dimensional k-vector space for any
i ≥ 0, and then build T (0) = k → T (1) → . . . → R such that T (i) → R is i-
connected, and T (i+1) is obtained from T (i) by first adjoining new generators in
degree i + 1 and then quotienting out relations in this degree. Then R = lim−→ T (i),
and compactness of R implies that T (n) → R splits for some n ≫ 0.

In the case R = k, we may take the empty collection, since k detects nilpotence
over k. Suppose by induction we have constructed such a collection {S1, . . . , Sn}

2Here and later on in the paper, a coproduct of Balmer spectra denotes the coproduct in the
category of topological spaces.
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for T , and we attach to T a new generator in degree i or quotient out a relation in
degree i to get to R. We split into cases, the first three being the easiest:

Case 1. i is odd and we are adjoining a new generator in degree i. Our new
algebra is R ≃ T ⊗kΛk[ti], with ti in degree i. Proposition 3.7 implies that Λk[t] → k
satisfies descent, and hence detects nilpotence. Hence,

T ⊗k Λk[ti] ⊗Λk[ti] k ≃ T

detects nilpotence over R, and we may take the same collection {S1, . . . , Sn} used
for T for R.

Case 2. i is odd and we are adjoining a relation in degree i. In this case,
there is a pushout diagram

Λk[ti] T

k R.

By basechange compatibility, the collection Sj ⊗Λk[ti] k together with k ⊗Λk[ti] k
detect nilpotence over R. Since the Sj are even, any map Λk[ti] → Sj must factor
over k, and Sj ⊗Λk[ti] k is also even, with

π0(Sj ⊗Λk[ti] k) ≃ π0(Sj)[x]

a polynomial ring over π0(Sj). Now, k ⊗Λk[ti] k ≃ k[σti] is a free algebra on a
class σti in degree i + 1. By Proposition 3.7, the collection {k, k[(σti)±1]} detects
nilpotence over k[σti]. Now, we can use that there is a map k[(σti)±1] → k[(x2)±1]
to the free algebra on an invertible class in degree 2 (taking σti to x

(i+1)/2
2 ) which

admits descent, hence detects nilpotence. Whence, we may take for R the collection

{S1 ⊗Λk[ti] k, . . . , Sn ⊗Λk[ti] k, k[x±1
2 ]},

satisfying the desired properties.

Case 3. i is even and we are adjoining a new generator in degree i. This
is similar to Case 2. In this case, R = T ⊗k k[ti] with ti a polynomial generator in
degree i, and we may use for R the collection

{S1 ⊗k k[ti], . . . , Sn ⊗k k[ti], k[x±1
2 ]}.

Case 4. i is even and we are adjoining a relation in degree i. In this case,
there is an algebra map k[ti] → T , with R ≃ T ⊗k[ti]k. By basechange compatibility,
the collection of Sj ⊗k[ti] k and k ⊗k[ti] k jointly detects nilpotence over R. The
algebra k ⊗k[ti] k ≃ Λk[σti] is free on a generator in odd degree, so k detects
nilpotence over this algebra.

We reduce to showing that if S is an even E∞-k-algebra with a unit in π2(S) and
with π0(S) a smooth integral domain over k, then for any x ∈ π0(S), there exists
algebras S′

1, . . . , S′
m with the same property, and maps S/x → S′

j which jointly
detect nilpotence. By [Mat16, Theorem 1.3/4], we find that a collection of maps
{S/x → S′

j} between even Noetherian E∞-k-algebras with a unit in degree 2 detects
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nilpotence if and only if the induced map
m∐

j=1
Spec(π0(S′

j)) → Spec(π0(S/x))

is surjective. Given an even 2-periodic E∞-k-algebra S, there are a number of
operations we can apply to S make other algebras with these same properties.
Namely, we may adjoint a polynomial variable to π0(S), we may localize π0(S)
at any multiplicatively closed set, and we may quotient out π0(S) by a regular
sequence. In particular, starting from our S, we can get maps to étale covers,
Zariski covers, and (affine covers of) blowups along smooth centers.

Consider the divisor cut out by x ∈ π0(S) on Spec(S). By Hironaka’s theorem
on embedded resolution of singularities [Hir64, Corollary 3], there is a sequence
of blowups along smooth centers Xr → . . . → X0 = Spec(π0(S)) such that the
(reduced subscheme structure on the) pullback of (x) to Xr is a normal crossing
divisor. By what we have said, Xr has an affine open cover by schemes Spec(π0(Aj))
for even 2-periodic smooth E∞-S-algebras Aj . Refining this by an étale cover to
assume x pulls back to a strict normal crossing divisor, and then further if need
be to assume that every irreducible component of the pullback of x is given by a
principal divisor, we may assume that we have a collection of maps S → Aj of even
2-periodic smooth E∞-rings detecting nilpotence (since the induced map of Zariski
spectra of their π0 is jointly surjective) such that the image of x in each Aj is either
a unit, or can be written as x = y1 . . . yrj

with π0(Aj)/yn a k-smooth integral
domain for each n. Finally, we use that we have maps S/x → Aj/yk which jointly
detect nilpotence, again using the result of Mathew and the fact that the induced
map on Zariski spectra is surjective. Therefore, taking the collection {Aj/yk}j,k as
our S′

1, . . . , S′
m, the claim is shown. □

Corollary 3.9. If R is a connective finitely presented E∞-Q-algebra with π0(R)
a field, then Spc(R) is a Noetherian topological space, and there is a collection of
“residue fields” for R. These come in the form of E∞-algebra maps R → Lj for
j ∈ J some index set, with each Lj an even 2-periodic E∞-k-algebra with π0(Lj) a
field, such that the collection {R → Lj} ∪ {R → k} detects nilpotence over R.

Proof. By Theorem 3.8 and Proposition 3.7, there is a surjection from the Noether-
ian topological space

∐n
i=1 Spc(Si)

∐
Spc(k) → Spc(R) is surjective, so that Spc(R)

must be Noetherian as well, proving the first claim. The second claim follows by
Theorem 3.8 and [Mat16, Theorem 1.3/4]. □

Remark 3.10. We only prove existence of residue fields in the above, not “unique-
ness.” Below, we will prove “uniqueness” of the residue field at the closed point.
We do not say anything about whether or not there can be residue fields R → L1,
R → L2, both having the same image (different from the closed point) under the
induced map of Balmer spectra, but with L1 ⊗R L2 ≃ 0. One would not expect
this to happen, but we do not rule out the possibility in the present work.

Theorem 3.11. If R is a connective finitely presented E∞-Q-algebra with π0(R) =
k a field, then the exact-nilpotence condition holds for Modperf

R .

Proof. Since Spc(R) is Noetherian, there is some object Z ∈ Modperf
R with supp(Z)

equal to the unique closed point, we fix a choice of such an object. Take a fiber
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sequence
y

g−→ 1
f−→ x

of perfect R-modules, and suppose without loss of generality (up to dualizing this
sequence) that g ⊗R k ≃ 0. We claim that Z ⊗ g is ⊗-nilpotent. By Corollary 3.9,
there is a set of residue fields {Lj}j∈J ∪ {k} for R, and so it suffices to check that
Lj ⊗R (Z ⊗g) is ⊗-nilpotent for each of our constructed residue fields Lj . If the map
Spc(Lj) → Spc(R) has image different from the closed point, then Lj ⊗R Z ≃ 0, so
we are reduced to the case when Lj ⊗R − has trivial kernel on perfect R-modules.
Over Lj , either g ⊗R Lj or f ⊗R Lj is zero, and we claim that g ⊗R Lj is zero, which
would follow if we knew that k ⊗R Lj was nonzero.

Write L[x±1
2 ] := Lj , with L = π0(Lj) a field and x2 a chosen unit in π2(Lj).

Write L[x2] for the connective cover of L[x±1
2 ] (noting R → L[x±1

2 ] factors over R →
L[x2] by connectivity of R). Suppose towards a contradiction that L[x±1

2 ]⊗R k ≃ 0.
First, we note that π∗(R) → π∗(L[x±1

2 ]) must factor over k, or else there is some
y ∈ π2n(R) mapping to a unit multiple of xn

2 for some n > 0, which would imply
that cofib(y) ⊗R L[x±1

2 ] ≃ 0, contradicting the choice of map R → L[x±1
2 ]. Suppose

that we have inductively constructed an E∞-R-algebra Ri which is perfect as an
R-module, with R0 = R, such that R → L[x2] factors uniquely as R → Ri → L[x2],
and such that π∗(Ri) → π∗(L[x±1

2 ]) factors over k.
If there is some n > 0 with π2n(Ri) ̸= 0, take n > 0 minimal with this property,

choose a nonzero z2n ∈ π2n(Ri), and define Ri+1 := R ⊗k[z2n] k. Upon applying
HomCAlg(−, L[x±1

2 ]) to the pushout diagram

k[z2n] Ri

k Ri+1,

we obtain a fiber sequence of spaces
HomCAlg(Ri+1, L[x±1

2 ]) → HomCAlg(Ri, L[x±1
2 ]) → HomCAlg(k[z2n], L[x±1

2 ]).
Since π1(HomCAlg(k[z2n], L[x±1

2 ])) ≃ 0, the extension of Ri → L[x±1
2 ] to Ri →

Ri+1 → L[x±1
2 ] is unique. If π2n(Ri) = 0 for n > 0, define Ri+1 := Ri.

We claim that Ri+1 has the desired properties. Indeed, suppose that the map
π∗(Ri+1) → π∗(L[x±1

2 ]) has image larger than k, so that there is some element
y ∈ π2n(Ri+1) mapping to a unit multiple of xn

2 for some n > 0. Since Ri+1 is a
perfect R-module by construction, it suffices to show that, should such a y exist,
then

Ri+1/y ⊗R L[x±1
2 ] ≃ 0,

or equivalently that x2 is nilpotent in the algebra
Ri+1/y ⊗R L[x2].

The splitting Ri+1 ⊗R L[x2] → L[x2] shows that the image of y ⊗ 1 in π∗(Ri+1 ⊗R

L[x2]) is not nilpotent. Again, by construction of Ri, Ri+1 ⊗R L[x2] is a perfect
L[x2]-module, so that the (graded) ring

A := π2n∗(Ri ⊗R L[x2])
is finitely generated as a module over the polynomial subring L[y ⊗ 1], and in
particular, 1 ⊗ xn

2 is integral over this subring. Whence, there is some monic
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polynomial f(z) over L[y ⊗ 1], which must be homogeneous for |y ⊗ 1| = 2n,
|z| = 2n. In particular, the polynomial f(z) takes the form

f(z) = zj + aj−1(y ⊗ 1)zj−1 + . . . + a1(y ⊗ 1)j−1z + a0(y ⊗ 1)j ,

for some j > 0 and some ai ∈ L. From this, it follows that 1 ⊗ xnj ≃ 0 in Ri/y ⊗R

L[x2], and hence Ri/y ⊗R L[x±1
2 ] ≃ 0, contradicting the fact that M ⊗R L[x±1

2 ] is
nonzero for every nonzero perfect R-module M .

Our sequence Ri → Ri+1 → . . . terminates only if Ri has π2n(Ri) = 0 for all
n > 0 at some finite stage of the construction. In any case, since πn(R) is finite
dimensional for all n > 0, the maps . . . → Ri → Ri+1 → . . . become increasingly
connective, and upon taking the colimit A := lim−→i

Ri, one finds that π2n(A) = 0
for n > 0, and R → L[x±1

2 ] factors uniquely as R → A → L[x±1
2 ]. Now, there is

a map A ⊗k k[x±1
2 ] → L[x±1

2 ], and the ring A ⊗k k[x±1
2 ] satisfies the hypothesis of

[Mat16, Proposition 4.9] by construction. Now, by Mathew’s Proposition 4.9, maps

A ⊗k k[x±1
2 ] → L[x±1

2 ]
are in bijection with maps

π∗(A ⊗k k[x±1
2 ] → L[x±1

2 ]) → π∗(L[x±1
2 ]).

In this way, we see that the map A⊗kk[x±1
2 ] → L[x±1

2 ] is homotopic to the composite

A ⊗k k[x±1
2 ] → k ⊗k k[x±1

2 ] → L[x±1
2 ].

Finally, the following commutative diagram

A A ⊗k k[x±1
2 ]

k k ⊗k k[x±1
2 ],

shows that A → L[x±1
2 ] factors as A → k → L[x±1

2 ], so the same holds of R → A →
k → L[x±1

2 ]. But then

k ⊗R L[x±1
2 ] ≃ (k ⊗R k) ⊗k L[x±1

2 ],
which cannot be zero, as k⊗Rk is nonzero. This yields the desired contradiction. □

Finally, we state the main theorem of the section, summarizing the known cases
where the exact-nilpotence condition holds.

Theorem 3.12. The class of local tt-categories for which the exact-nilpotence con-
dition holds is closed under filtered colimits along local transition maps, and contains
the following classes of tt-categories
• Localizations of the categories (Spgen

G )ω of compact objects in the category spectra
of genuine equivariant G-spectra for a compact Lie group G. [Bal, Corollary 5.10]
• The category Modperf

R of perfect complexes over an ordinary local ring R. [Bal, Corol-
lary 5.11]
• Localizations of the stable category of finite-dimensional Lie superalgebra repre-
sentations stab(F(g,g0)) over a complex Lie superalgebra. [HN24]
• The category of perfect modules over a rational E∞-ring R with π∗(R) a Noe-
therian ring [Mat16, Theorem 1.3].
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• The category of perfect modules over a connective E∞-ring R such that π∗(R) is
a Noetherian ring and π0(R) is local. (Proposition 3.1).
• The category of perfect modules over a rational connective E∞-ring R with π0(R)
local.

Proof. To prove the first claim, let C := lim−→i∈I
Ci be a filtered colimit along local

transition maps of local tt-categories for which the exact-nilpotence condition holds.
Consider a fiber sequence

y
g−→ 1

f−→ x

in C. Then, there exists some i ∈ I and some x′ ∈ Ci such that x is a summand
of the image of x′. Up to adding the complementary summand to x and y (which
won’t affect the nilpotence of f, g tensored with a nonzero object), we may assume
that x = x′. There is some j ∈ I, j > i, and a map 1

f ′

−→ x′ in Cj having image
1

f−→ x in C. Taking 0 ̸= z ∈ Cj such that z ⊗ f ′ or z ⊗ fib(f ′) is ⊗-nilpotent, the
image of z has this same property in C. As the transition maps between the Ci

were local, the image of z in C is nonzero, and the exact-nilpotence condition holds
for C.

For the final bullet-point, let R be any connective rational E∞-ring with π0(R) lo-
cal. Then, R can be written as a filtered colimit of localizations of finitely presented
E∞-Q-algebras, by first writing R as an arbitrary filtered colimit of finitely presented
E∞-Q-algebras, and localizing every term S in the colimit at the pullback to π0(S)
of the maximal ideal in π0(R). By 3.2, a map R → S of connective local E∞-rings
induces a local map on their categories of perfect modules if π0(R) → π0(S) is a
local ring homomorphism. By [Lur17, Corollary 4.8.5.13], this gives a presentation
of Modperf

R as a filtered colimit along local transition maps of categories Modperf
S

with S the localization of a finitely presented connective rational E∞-ring, so we
may assume that R has these same properties by the first claim.

Note that π0(R) is a Noetherian ring, hence we can write the maximal ideal
as m = (x1, . . . , xn). The E∞-ring R/(x1, . . . , xn) is a connective, finitely presented
E∞-π0(R)/m-algebra, with π0(R)/m a field. The module R/(x1, . . . , xn) is also
perfect, so the exact-nilpotence condition holds for Modperf

R if and only if it holds
for Modperf

R/(x1,...,xn), where the claim follows by Theorem 3.11. □
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4. Strengthening Theorem 1.2

Finally, we will explain how the statement of Theorem 1.2 can be improved to
include a bound on the order of nilpotence. The idea for this comes from recent ul-
traproduct constructions in higher algebra [BSS20][Lev23]. We recall the definitions
here.

Definition 4.1. Fix a N-indexed collection {Ci} of tt-categories, and some non-
principal ultrafilter U on the natural numbers N. Then the ultraproduct of this
collection with respect to Ci is defined as:∏

U
Ci = lim−→

I∈U

∏
i∈I

Ci.

Remark 4.2. Since products and filtered colimits of symmetric monoidal stable
∞-categories commute with passing to the homotopy category, and both operations
make sense for triangulated categories, the above construction could be done equally
well at the triangulated level, for the more finitely-inclined.

The formalism of ultraproducts makes the following proof rather simple:

Theorem 4.3. The following are equivalent,
• The nerves of steel conjecture holds.
• For every local tt-category T , the exact-nilpotence condition holds.
• There exists an integer n such that for every local tt-category T , and any fiber
sequence as in Definition 1.1, there exists a nonzero object z ∈ T such that either
z ⊗ g⊗n ≃ 0 or z ⊗ f⊗n ≃ 0.

Proof. Theorem 1.2 is the equivalence of the first two statements, so we need only
see that the second condition implies the third. Suppose otherwise, that we had a
collection Cn of local tt-categories, such that for each n, there is a fiber sequence

yn
gn−→ 1

fn−→ xn

such that there exists 0 ̸= zn ∈ Cn with zn ⊗ g⊗n
n ≃ 0, but there is no 0 ̸= z′

n ∈ Cn

with z′
n ⊗ g⊗n−1 ≃ 0. Fix some non-principal ultrafilter U on the naturals, and

let T :=
∏

U Cn be the ultraproduct of these categories. Then, T remains a local
tt-category, since given nonzero objects (xn), (yn) ∈ T , the set of n such that xn

(resp. yn) is nonzero is contained in U , so too is their intersection, and since Cn

were all local, xn ⊗ yn is nonzero when both terms are, hence (xn) ⊗ (yn) is a
nonzero object of T . Rigidity, and the stable/triangulated structure both happen
pointwise. Now, there is a fiber sequence

(yn)n
(gn)n−−−→ 1

(fn)n−−−→ (xn)n

in T , where (fn)n is not ⊗-nilpotent on any nonzero object, and neither is (gn)n.
Indeed, if (gn)n were ⊗-nilpotent on a nonzero object z, we could take k such that
((gn)n)⊗k ⊗ z ≃ 0, and then choosing some I ∈ U with z nonzero on I, and any
r ∈ I with r > k, we would be supplied with a nonzero object zr ∈ Cr such that
zr ⊗ g⊗k

r ≃ 0, contradicting the choice of Cr. □
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